Submitted:
03 April 2023
Posted:
03 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction: The Environmental Challenges Facing Earth
2. Materials and Methods
- Bioenergy use is uncertain, because of lack of information on traditional fuelwood use
3. Can Earth’s Environmental Problems be Decoupled from Economic Growth?

4. Proposed New Technological Solutions: Smart Grids and Smart Cities
4.1. Smart Grids
- By ensuring that the power factor is kept high
- By reducing the need for new transmission lines through the decentralization of power supply, and reducing transmission losses
- Through load demand management, SGs can potentially eliminate the need for storage of surplus intermittent RE
- By supplying domestic consumers with details of real time energy use and costs, SGs can potentially cut energy use.
4.2. Smart Cities
5. The Need for Global Equity
| Country | tonnes CO2/capita |
|---|---|
| China | 7.07 |
| Eritrea | 0.16 |
| Ethiopia | 0.13 |
| France | 4.36 |
| Kuwait | 21.26 |
| Qatar | 30.68 |
| US | 14.44 |
| OECD | 8.34 |
| World | 4.39 |
| Country Co Country | Dom. Elec. (c/kWh)1 | Lowest quintile dom. energy % dom. exp. | Highest quintile dom. energy % dom. exp. | Primary energy use GJ/capita5 |
|---|---|---|---|---|
| Australia | 21.0 | 4.42 | 2.12 | 222.1 |
| Japan | 25.5 | 8.03 | 4.13 | 140.8 |
| UK | 27.5 | 8.04 | 3.54 | 108.9 |
| US | 13.2 | NA | NA | 279.9 |
6. Discussion and Conclusions
- A global approach is needed to assess decoupling of GDP from energy use and emissions. A wider approach is also needed when evaluating urban sustainability, as benefits at the individual household or traveller level may be negated at the city-wide level.
- There is no evidence at the global level for the absolute decoupling of GDP and atmospheric CO2 levels, energy use, or resources. Absolute decoupling will prove even harder to achieve in the future, give likely availability problems for key metals, as well as rising energy needs as ore grades decline and mining wastes rise.
- There is also no evidence to date for any significant reductions in energy or carbon emissions from ICT approaches, including smart grids and smart transport. Further, any potential benefits of SGs will be reduced if the replacement of FFs by mainly intermittent RE is too slow. With all the effort and money going into ICT approaches to improving sustainability, we may well have been putting our efforts in the wrong place.
- Out of all ICT approaches discussed in this review, only replacement of transport by ICT has the potential for carbon savings, but needs supporting policies, as evidenced by the lockdowns induced by covid-19 in 2020.
- Given the risks to privacy and security raised by the use of AI and the IoT, with its millions of sensors, it seems only prudent to examine whether comparable or even larger reductions in energy use and emissions can be obtained by simpler methods. For transport, one possibility is to focus on accessibility, not (vehicular) mobility [25].
- Carbon emissions at the household level are very unequally distributed, largely the consequence of income inequity, which is still increasing globally [78]. The problem is to increase carbon and income equity at the household level while effecting large emission reductions globally.
- Given the present—and likely future absence—of global energy decoupling, and the failure of ICT approaches to produce net energy or carbon savings, the conclusion is that global energy use must be cut for a sustainable future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
- AV Automated vehicle
- BECCS bioenergy with carbon capture and storage
- BD Big data
- BTS Bureau of Transportation Statistics
- CC climate change
- CCS carbon capture and storage
- CDR carbon dioxide removal
- CH4 methane
- CO2 carbon dioxide
- CO2-eq carbon dioxide equivalent
- EIA Energy Information Administration
- EJ exajoule (1018 joule)
- EROI energy return on investment
- ESS Earth System Science
- FF fossil fuels
- GDP Gross Domestic Product
- GHG greenhouse gas
- GJ gigajoule (109 joule)
- Gt gigatonne = 109 tonne
- GW gigawatt (109 watt)
- H2 hydrogen
- IAMs integrated assessment models
- ICT Information and communication technology
- IEA International Energy Agency
- IoT Internet of Things
- IPCC Intergovernmental Panel on Climate Change
- MJ megajoule (106 joule)
- Mt megatonne (106 tonne)
- OECD Organization for Economic Cooperation and Development
- OPEC Organization of the Petroleum Exporting Countries
- ppm parts per million (atmospheric)
- p-k passenger-km
- PPP purchase parity pricing
- PV photovoltaic
- RE renewable energy
- RPK revenue passenger-km
- SAE Society of Automotive Engineers
- SDG Sustainable Development Goal
- SG Smart Grid
- t CO2/cap tonnes CO2 per capita
- TWh terawatt-hour (1012 watt-hr)
- USD US dollars
- V2G Vehicle-to-grid
Appendix A


References
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Gregg, J.W.; Lenton, T.M.; Palomo, I.; Eikelboom, J.A.J.; Law, B.E.; Huq, S.; Duffy, P.B.; et al. World scientists’ warning of a climate emergency. Biosci. 2021, 71, 894–898. [Google Scholar] [CrossRef]
- Rising, J.; Tedesco, M.; Piontek, F.; Stainforth, D.A. The missing risks of climate change. Nature 2022, 610, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Steel, D.; DesRoches, C.T.; Mintz-Woo, K. Climate change and the threat to civilization. Proc. Natl. Acad. Sci. USA 2022, 119, e2210525119. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- Dirzo, R.; Ceballos, G.; Ehrlich, P.R. Circling the drain: The extinction crisis and the future of humanity. Phil. Trans. R. Soc. B 2022, 377, 20210378. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Lu, Y.; Jackson, J. Curtailing the collapse of the living world. Sci. Adv. 2022, 8, eadf9317. [Google Scholar] [CrossRef]
- Dryden, H.; Duncan, D. Climate disruption caused by a decline in marine biodiversity and pollution. IJECC 2022, 12, 3414–3436. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Review: Renewable energy in an increasingly uncertain future. Appl. Sci. 2023, 13, 388. [Google Scholar] [CrossRef]
- World Economic Forum. Plastic Pollution is a Public Health Crisis. How Do We Reduce Plastic Waste? WEF, 2022. Available online: https://www.weforum.org/agenda/2022/07/plastic-pollution-ocean-circular-economy/ (accessed on 3 November 2022).
- Gross, M. Pollution passes boundaries. Current Biol. 2022, 32, R141–R157. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthrop. Rev. 2015, 1–18. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- Brodie, J.F.; Watson, J.E.M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2205512120. [Google Scholar] [CrossRef] [PubMed]
- Kemp, L.; Xu, C.; Depledge, J.; et al. Climate endgame: Exploring catastrophic climate change scenarios. Proc. Natl. Acad. Sci. USA 2022, 119, e2108146119. [Google Scholar] [CrossRef] [PubMed]
- Trout, K.; Muttitt, G.; Lafleur, D.; Van de Graaf, T.; Mendelevitch, R.; Mei, L.; Meinshausen, M. Existing fossil fuel extraction would warm the world beyond 1.5 ◦C. Environ. Res. Lett. 2022, 17, 064010. [Google Scholar] [CrossRef]
- Lovins, A.B. How big is the energy efficiency resource? Environ. Res. Lett. 2018, 13, 090401. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Renewable energy and energy reductions or solar geoengineering for climate change mitigation? Energies 2022, 15, 7315. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Thomas Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Feasibility of a 100% global renewable energy system. Energies 2020, 13, 5543. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The limits of renewable energy. AIMS Energy 2021, 9, 812–829. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Switching Off: Meeting Our Energy Needs in a Constrained Future. Springer Briefs on Energy; Springer: Berlin, Germany, 2022; 90p, ISSN 2191-5520. [Google Scholar]
- Fearnside, P.M. Hydropower: don’t waste climate money on more dams. Nature 2019, 568, 33. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Pol. 2016, 93, 3–7. [Google Scholar] [CrossRef]
- O’ Sullivan, M.; Gravatt, M.; Popineau, J.; O’ Sullivan, J.; Mannington, W.; McDowell, J. Carbon dioxide emissions from geothermal power plants. Renew. Energy 2021, 2021 175, 990–1000. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; AR6, WG1; CUP: Cambridge, UK, 2021. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 12 July 2022).
- International Energy Agency (IEA). Global Energy Review: CO2 Emissions in 2021; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 26 July 2022).
- Moriarty, P.; Honnery, D. New energy technologies: Microalgae, photolysis and airborne wind turbines. Sci 2019, 1, 43. [Google Scholar] [CrossRef]
- Hand, E. Hidden hydrogen. Science 2023, 379, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Lapi, A.; Chatzimpiros, P.; Raineau, L.; Prinzhofer, A. System approach to natural versus manufactured hydrogen: An interdisciplinary perspective on a new primary energy source. Int. J. Hydrog. Energy 2022, 47, 21701–21712. [Google Scholar] [CrossRef]
- Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Key World Energy Statistics 2021; IEA/OECD: Paris, France, 2021. [Google Scholar]
- BP. BP Statistical Review of World Energy 2022; BP: London, UK, 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 26 July 2022).
- International Energy Agency (IEA). World Energy Outlook 2022; IEA/OECD: Paris, France, 2022. [Google Scholar]
- Organization of the Petroleum Exporting Countries (OPEC). 2022 OPEC World Oil Outlook; OPEC: Vienna, Austria, 2022. [Google Scholar]
- Bureau of Transportation Statistics (BTS). National Transportation Statistics 2021. BTS, 2021. Available online: (accessed on 1 March 2023).
- Wikipedia (2023) Internet of Things. Available online: https://en.wikipedia.org/wiki/Internet_of_things (accessed on 20 January 2023).
- Moriarty, P. Advanced communication and computational technologies in a sustainable urban context: smart grids, smart cities and smart health, In: Smart Grid 3.0: Computational and Communication Technologies, Bhargav Appasani, B.; Bizon, N. (Eds) Springer, forthcoming, 2023.
- Haberl, H.; Wiedenhofer, D.; Virag, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Ritchie, H. A Number of Countries Have Decoupled Economic Growth from Energy Use, Even if We Take Offshored Production into Account. 2021. Available online: https://ourworldindata.org/energy-gdp-decoupling.
- Sanye-Mengual, E.; Secchi, M.; Corrado, S.; Beylot, A.; Sala, S. Assessing the decoupling of economic growth from environmental impacts in the European Union: A consumption-based approach. J. Cleaner Prod. 2019, 236, 117535. [Google Scholar] [CrossRef]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. Decoupling Debunked: Evidence and Arguments Against Green Growth as a Sole Strategy for Sustainability. 2019. Available online: https://eeb.org/wp-content/uploads/2019/07/Decoupling-Debunked.pdf.
- Niebuhr, B.B.; Sant’Ana, D.; Panzacchi, M.; van Moorter, B.; Sandström, P.; Ronaldo, G. Morato, R.G.; Skarin, A. Renewable energy infrastructure impacts biodiversity beyond the area it occupies. Proc. Natl. Acad. Sci. USA 2022, 119, e2208815119. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Wambersie, L.; Wackernagel, M. Estimating the Date of Earth Overshoot Day. 2022. Available online: https://www.overshootday.org/content/uploads/2022/06/Earth-Overshoot-Day-2022-Nowcast-Report.pdf (accessed on 14 November 2022).
- Airbus. Global Market Forecast. Airbus, 2022. Available online: https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast (accessed on 28 August 2022).
- Garrett, T.J.; Grasselli, M.; Keen, S. Past world economic production constrains current energy demands: Persistent scaling with implications for economic growth and climate change mitigation. PLoS ONE 2020, 15, e0237672. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Pol. 2014, 64, 141–152. [Google Scholar] [CrossRef]
- Lawton, G. Net zero's dirty secret. New Sci. 2021, 252, 38–43. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy expenditure, economic growth, and the minimum EROI of society. Energy Pol. 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Azadi , M.; Northey , S.A.; Ali, S.H.; Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 2020, 13, 100–104. [Google Scholar] [CrossRef]
- Franssen, T.; de Wilde, M. A clean energy future isn’t set in stone. Nat. Geosci. 2021, 14, 636–637. [Google Scholar] [CrossRef]
- Statista. Historic Average Carbon Dioxide (CO2) Levels in the Atmosphere Worldwide From 1959 to 2021 (In Parts Per Million). Statista 2023. Available online: https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/.
- Wikipedia. Motor Vehicle. 2023. Available online: https://en.wikipedia.org/wiki/Motor_vehicle (accessed on 28 February 2023).
- World Bank. GDP, PPP (Constant 2017 International $). World Bank, 2023. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.KD (accessed on 20 March 2023).
- International Energy Agency (IEA). Global Air Conditioner Stock, 1990-2050. IEA 2022. Available online: https://www.iea.org/data-and-statistics/charts/global-air-conditioner-stock-1990-2050 (accessed on 2 March 2023).
- International Energy Agency (IEA). The Future of Cooling: Opportunities for Energy Efficient Air Conditioning. Paris, OECD/IEA, 2018. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 2 February 2023).
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A comprehensive survey. 2021. Arxiv. Available online: https://arxiv.org/pdf/2108.04973.pdf (accessed on 12 February 2023).
- Sovacool, B.K.; Hook, A.; Sareen, S.; Geels, F.W. Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Glob. Environ. Change 2021, 68, 102272. [Google Scholar] [CrossRef]
- Longo, M.; Roscia, M.C.; Zanelli, D. Net zero energy of smart house design. IEEE Xplore 2015. [Google Scholar] [CrossRef]
- Humayun, M.; Alsaqer, M.S.; Jhanjhi, N. Energy optimization for smart cities using IoT. Appl. Artif. Intel. 2022, 36, e2037255. [Google Scholar] [CrossRef]
- Bachanek, K.H.; Tundys, B.; Wi´sniewski, T.; Puzio, E.; Maroušková, A. Intelligent street lighting in a smart city concepts—a direction to energy saving in cities: An overview and case study. Energies 2021, 14, 3018. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: the evolution of the city-energy sustainability nexus. Environ. Dev. 2021, 39, 100626–10. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Kang, J.H.; An, J.; Yeom, S.; Hong, L.T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. & Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Thomson, C. Europe Officially Bans New ICE Cars. 2023. Available online: https://www.msn.com/en-au/motoring/news/europe-officially-bans-new-ice-cars/ar-AA17uUvu?ocid=msedgdhp&pc=U531&cvid=c9f3241b3511464f9b74d39958ae1572 (accessed on 15 February 2023).
- Moriarty, P. Electric vehicles can have only a minor role in reducing transport’s energy and environmental challenges. AIMS Energy 2022, 10, 131–148. [Google Scholar] [CrossRef]
- Wikipedia Vehicle-to-grid. 2023. Available online: https://en.wikipedia.org/wiki/Vehicle-to-grid (accessed on 9 January 2023).
- Chafkin M Even After $100 Billion, Self-Driving Cars Are Going Nowhere. Bloomberg, 2022. Available online: https://www.bloomberg.com/news/features/2022-10-06/even-after-100-billion-self-driving-cars-are-going-nowhere?leadSource=uverify%20wall#xj4y7vzkg (accessed on 14 January 2023).
- Nilles, J.M. Talk is cheaper. IEEE Spectrum 1976, July, 91-93. ISSN 0018-9235 (print), 1939-9340 (electronic).
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global airpollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Chen, Y.; Ardila-Gomez, A.; Frame, G. Achieving energy savings by intelligent transportation systems investments in the context of smart cities. Transp. Res. Pt. D 2017, 54, 381–396. [Google Scholar] [CrossRef]
- Hickel, J. The contradiction of the sustainable development goals: Growth versus ecology on a finite planet. Sustain. Dev. 2019, 27, 873–884. [Google Scholar] [CrossRef]
- Kartha, S.; Kemp-Benedict, E.; Ghosh, E.; Nazareth, A.; Gore, T. The Carbon Inequality Era. Joint Research Report. Stockholm Environment Institute: Stockholm, Sweden, 2020.
- Our World in Data. Access to Energy. 2023. Available online: https://ourworldindata.org/energy-access (accessed on 2 March 2023).
- Vaughan, A. China is building more than half of the world’s new coal power plants. New Sci. 2022, 26 April. Available online: https://www.newscientist.com/article/2317274-china-is-building-more-than-half-of-the-worlds-new-coal-power-plants/ (accessed on 29 April 2022).
- Drehobl, A.; Ross, L.; Ayala, R. How High Are Household Energy Burdens? ACEEE, 2020. Available online: https://www.aceee.org/sites/default/files/pdfs/u2006.pdf.
- Australian Bureau of Statistics (ABS). 2015–16 Household Expenditure Survey Australia: Summary of Results (Cat No 65300DO003). ABS, Canberra, 2017.
- Statistics Bureau Japan (SBJ). Japan Statistical Yearbook 2023. Statistics Bureau, Tokyo, 2023. (Also earlier editions). Available online: https://www.stat.go.jp/english/data/nenkan/72nenkan/index.html.
- Office for National Statistics (ONS) (UK). Family Spending Workbook 1: Detailed Expenditure and Trends. ONS, UK, 2022. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/expenditure/datalist?filter=datasets.
- Stoddard, I.; Anderson, K.; Capstick, S.; Carton, W.; Depledge, J.; Facer, K.; Gough, C.; Hache, F.; Hoolohan, C.; Hultman, M.; et al. Three decades of climate mitigation: Why haven’t we bent the global emissions curve? Annu. Rev. Environ. Resour. 2021, 46, 653–689. [Google Scholar] [CrossRef]
- Dyke, J.; Watson, R.; Knorr, W. Climate Scientists: Concept of Net Zero Is a Dangerous Trap. The Conversation April 21, 2021. Available online: https://theconversation.com/climate-scientists-concept-of-net-zero-is-a-dangerous-trap-157368 (accessed on 7 March 2023).
- Natali, S.M.; Holdren, J.P.; Rogers, B.M.; Treharne, R.; Duffy, P.B.; Pomerance, R. : MacDonald, E. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 2021, 118, e2100163118. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Lenzen, M.; Lorenz, T.; Keyßer, L.T.; Steinberger, J.K. Scientists’ warning on affluence. Nat. Comm. 2020, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Kallis, G. Limits, ecomodernism and degrowth. Pol. Geog. 2021, 87, 102367. [Google Scholar] [CrossRef]
- Hickel, J.; Hallegatte, S. Can we live within environmental limits and still reduce poverty? Degrowth or decoupling? Dev. Pol. Rev. 2021. [Google Scholar] [CrossRef]
- Hickel, J.; Brockway, P.; Kallis, G.; Keyßer, L.; Lenzen, M.; Slameršak, A.; Steinberger, J.; Ürge-Vorsatz, D. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 2021, 6, 766–768. [Google Scholar] [CrossRef]
- Bongaarts, J. Population growth and global warming. Pop. Dev. Rev. 1992, 18, 299–319. [Google Scholar] [CrossRef]
- Tans, P., Keeling, R. Trends in Atmospheric Carbon Dioxide, Mauna Loa CO2 Mean Annual Data. 2023. Available online: https://gml.noaa.gov/ccgg/trends/data.html (accessed on 20 March 2023).
- United Nations (UN). World Population Prospects 2019. UN: NY, 2019. Available online: https://population.un.org/wpp/ (accessed on 24 November 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
