Preprint
Article

This version is not peer-reviewed.

Performance Evaluation of Machine Learning Regressors for Estimating Real Estate House Prices

Submitted:

20 September 2022

Posted:

22 September 2022

You are already at the latest version

Abstract
Real estate market analysis and place-based decision-making can both benefit from understanding house price development. Although considerable amounts of interest have been devoted to housing price modelling, the assessment of house price fluctuation still requires further comparing studies. Housing price prediction is challenging as contributing factors are quite dynamic and subject to a variety of regulating elements. The future understanding of the housing market trends not only provides sufficient customers’ investment trust potential but also enables the financial support to progress more realistic in advance. In this study, a comprehensive data-informed framework is developed to investigate and anticipate real estate house prices using historical data by combining explanatory features. We examined about 500 houses in the Boston area as a case study and discussed how the increase in housing prices could vary by each of the contributing components. Fourteen Machine Learning (ML) regressors imply to the dataset and lead to a comparative study of the accuracy of all the models. ML-based regressors forecast real estate home prices as a function of thirteen influencing factors. The most informative features were also selected by conducting the Permutation Feature Importance technique on all the features The study provides a comprehensive tool for evaluating the robustness and efficiency of ML models for housing price predictions. The results highlighted Random Forest as the best model has an R2 equals to 0.88 and Voting Regressor as the second highest rated model has R2 equals to 0.87. Results of multivariate exploratory data analysis also implied that the average number of rooms and percentage of the lower status of the population have the most significant impact on the price range predictions.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated