Preprint
Article

This version is not peer-reviewed.

Covariant Space-Time Line Elements in the Friedmann-Lemaitre-Robertson-Walker Geometry

A peer-reviewed article of this preprint also exists.

Submitted:

06 December 2021

Posted:

07 December 2021

You are already at the latest version

Abstract
Most quantum gravity theories endow space-time with a discreet nature by space quantization on the order of Planck length (lp ). This discreetness could be demonstrated by confirmation of Lorentz invariance violations (LIV) manifested at length scales proportional to lp. In this paper, space-time line elements compatible with the uncertainty principle are calculated for a homogeneous, isotropic expanding Universe represented by the Friedmann-Lemaitre-Robertson-Walker solution to General Relativity (FLRW or FRW metric). To achieve this, the covariant geometric uncertainty principle (GeUP) is applied as a constraint over geodesics in FRW geometries. A generic expression for the quadratic proper space-time line element is derived, proportional to Planck length-squared and dependent on two contributions. The first is associated to the energy-time uncertainty, and the second depends on the Hubble function. The results are in agreement with space-time quantization on the expected length orders, according to quantum gravity theories and experimental constraints on LIV.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated