Preprint
Article

This version is not peer-reviewed.

On the Applicability of Electrophoresis for Protein Quantification

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2021

Posted:

06 July 2021

You are already at the latest version

Abstract
Polyacrylamide gel electrophoresis (PAGE) is widely used for studying proteins and protein-containing objects. However, it is employed most frequently as a qualitative method rather than a quantitative one. In this paper, we show the feasibility of routine digital image acquisition and mathematical processing of electrophoregrams for protein quantification. Both the well-studied model protein molecules (bovine serum albumin) and more complex real-world protein-based products (casein-containing isolate for sports nutrition), which were subjected to mechanical activation in a planetary ball mill to obtain samples characterized by different protein denaturation degrees, were used as study objects. Protein quantification in the mechanically activated samples was carried out. The degree of destruction of individual protein was shown to be higher compared to that of protein-containing mixture after mechanical treatment for an identical amount of time. The methodological approach used in this study can serve as guidance for other researchers who would like to use electrophoresis for protein quantification both in individual form and in protein mixtures. The findings prove that photographic imaging of gels followed by mathematical data processing can be applied for analyzing the electrophoretic data.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated