Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation

Version 1 : Received: 21 September 2020 / Approved: 23 September 2020 / Online: 23 September 2020 (03:54:52 CEST)

A peer-reviewed article of this Preprint also exists.

Pokswinski, S.; Gallagher, M.R.; Skowronski, N.S.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K. Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire 2020, 3, 55. Pokswinski, S.; Gallagher, M.R.; Skowronski, N.S.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K. Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire 2020, 3, 55.

Abstract

Firebrands are an important agent of wildfire spread and structure fire ignitions at the wildland urban interface. Bark flake morphology has been highlighted as an important, yet poorly characterized factor in firebrand generation, transport, deposition, and ignition of unburned material. Using pine species where bark flakes are the documented source of embers, we conducted experiments to investigate how bark structure changes in response to diurnal drying. Over a 3-day period in a longleaf pine (Pinus palustris Mill.) stand in Florida, we recorded changes in temperature, moisture content and structure of bark across different facing aspects of mature pine trees to examine the effects of varying solar exposure on bark moisture. We further compared results to bark drying in a pitch pine (Pinus rigida Mill.) plantation in New Jersey. Under all conditions, bark peeled and lifted away from the tree trunk over the study periods. Tree bole aspect and the time of day interacted to significantly affect bark peeling. General temperature increases and moisture content decreases were significantly different between east and west aspects in pitch pine, and with time of day and aspect in longleaf pine. These results illustrate that bark moisture and flakiness is highly dynamic on short time scales, driven largely by solar exposure. These diurnal changes likely influence the probability of firebrand production during fire events via controls on moisture (ignition) and peeling (lofting).

Keywords

firebrands; embers; bark; photogrammetry; fuel moisture

Subject

Biology and Life Sciences, Forestry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.