Preprint
Article

This version is not peer-reviewed.

On the Directivity of Lamb Waves Generated by Wedge PZT Actuator in Thin CFRP Panel

A peer-reviewed article of this preprint also exists.

Submitted:

07 February 2020

Posted:

10 February 2020

You are already at the latest version

Abstract
This paper addresses investigation of guided-wave excitation by angle-beam wedge piezoelectric transducers in multi-layered composite plate structure with orthotropic symmetry of the material. The aim of the present study is to determine the capability of such actuators to provide the controlled generation of an acoustic wave of a desirable type with the necessary wavelength, propagation distance and directivity. The studied CFRP panel is considered as homogenous with effective elastic moduli and anisotropic structural damping, whose parameters were determined experimentally. According to the results of dispersion analysis and taking into account the data of wave attenuation in a highly damping CFRP composite, the two types of propagating waves A0 and S0 were considered theoretically and experimentally in the frequency range 10 - 100 kHz. Using the results of a previous study, the structure of the wedge actuator was reconstructed to develop its finite element (FE) model, and a modal analysis was carried out, which revealed the most intense natural vibration modes and their eigenfrequencies within the used frequency range. Both experimental and numerical studies of the generation, propagation, directivity and attenuation of waves in the orthotropic composite panel under study revealed the influence of the angular orientation of the actuator on the formation of wave patterns and allowed to determine the capabilities of the wave's directivity control.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated