Preprint
Article

This version is not peer-reviewed.

Acid-Base Bifunctional Hf Nanohybrids-Enabled High Selectivity in Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone

A peer-reviewed article of this preprint also exists.

Submitted:

26 May 2018

Posted:

28 May 2018

You are already at the latest version

Abstract
Catalytic upgrading of bio-based platform molecules is one of promising approaches for biomass valorization. However, most solid catalysts are thermally and/or chemically unstable and difficult to prepare. In this study, a stable organic phosphonate-hafnium solid catalyst (PPOA-Hf) was synthesized, and acid-base bifunctional sites were found to play a cooperative role in the cascade transfer hydrogenation and cyclization of ethyl levulinate (EL) to γ-valerolactone (GVL). Under relatively mild reaction conditions of 160 ºC for 6 h, EL was completely converted to GVL in a good yield of 85%. The apparent activation energy was calculated to be 53 kJ/mol, which was lower than other solid catalysts for the same reaction. In addition, the PPOA-Hf solid catalyst did not significantly decrease its activity after five recycles, and no evident leaching of Hf was observed, indicating its high stability and potential practical application.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated