Submitted:
10 February 2026
Posted:
12 February 2026
You are already at the latest version
Abstract
Background: While Plasmodium falciparum (Pf) genomes are constantly evolving to counter new antimalarial drugs, Pf parasites currently allow ancient Pf-malaria-combating red blood cell (RBC) genetic variants to markedly protect humans against onset of severe Pf disease and death. The prevalences of sickle-trait hemoglobin (HbAS) RBCs and “dual-gene protection” type-O HbAS RBCs are substantial in Pf-endemic regions thousands of years after the “sickle” HbS hemoglobin allele (HBB gene variant) and the type-O ABO blood group first emerged. Do Pf-human coevolution data and growing interest in transfusion services in Africa suggest rescue exchanges of “evolution-engineered” RBCs warrant evaluation? Methods: We reviewed transfusion-related publications and data regarding Pf-combating RBC genetic variants and a worrisome Pf genotype (Pfsa+++) that completely eliminates HbAS survival-promotion. Results: Clinicians in Africa are eager to advance transfusion therapies and exploit automated continuous-flow apheresis machines for RBC exchange. There is no evidence the low prevalence of Pfsa+++ is increasing or the combination of the survival-promoting effects of HbAS hemoglobin and type-O blood group provides less than an additive increase in protection. Conclusions: Geneticists can support evaluating therapeutic use of HbAS RBCs by explaining how the prevalence of the worrisome Pfsa+++ genotype might be low and unchanging due to an equilibrium between competing selection pressures and “fitness costs.” Since HbAS hemoglobin alone provides 90% protection against death, conceivably, no human with type-O HbAS RBCs has ever died from Pf malaria. So, it seems prudent to evaluate converting children with life-threatening Pf infections into type-O HbAS patients via exchange transfusion – now.
Keywords:
1. Preface
Evaluating Type-O HbAS Exchange: Patient Exclusions and African Perspectives
2. Introduction
2.1. Terms and Potential Confusions
2.2. Goals and Objectives
2.3. Context and Challenges
2.4. Coevolution of Human and Pf Genomes
Adjunctive exchange transfusion, post-exchange rebound parasitemia, and “time to speak”
3. Methods
4. Results
4.1. HbAS RBC Data
4.2. Pfsa+++ Parasite Data
4.3. Type-O RBC Data
4.4. “Dual-Gene” Type-O HbAS RBC Data
4.5. Transfusion-Related Findings
5. Discussion
5.1. Therapeutic Implications of the HbAS RBC Data
5.2. Therapeutic Implications of the Pfsa+++ Parasite Data
5.3. Therapeutic Implications of the Type-O RBC Data
5.4. Therapeutic Implications of the Type-O HbAS RBC Data
5.5. Possible “Fitness Costs” That May Help Explain the Low Pfsa+++ Prevalence
5.6. EV-Related Research Opportunities
6. Conclusions
References
- Naik, R. P.; Haywood, C. Sickle cell trait diagnosis: clinical and social implications. Hematol. Am. Soc. Hematol. Educ. Program 2015, vol. 2015(no. 1), 160–7. [Google Scholar] [CrossRef]
- Loscertales, M.-P.; Owens, S.; O’Donnell, J.; Bunn, J.; Bosch-Capblanch, X.; Brabin, B. J. ABO blood group phenotypes and Plasmodium falciparum malaria: unlocking a pivotal mechanism. Adv. Parasitol. 2007, vol. 65, 1–50. [Google Scholar] [CrossRef]
- M. Tétard et al., “Heterozygous HbAC but not HbAS is associated with higher newborn birthweight among women with pregnancy-associated malaria.,” Sci. Rep., vol. 7, no. 1, p. 1414, 2017. [CrossRef]
- VEIGA, S.; VAITHIANATHAN, T. MASSIVE INTRAVASCULAR SICKLING AFTER EXCHANGE TRANSFUSION WITH SICKLE CELL TRAIT BLOOD. Transfusion (Paris) vol. 3, 387–91. [CrossRef]
- Novak, R. W.; Brown, R. E. Multiple renal and splenic infarctions in a neonate following transfusion with sickle trait blood. Clin. Pediatr. (Phila.) 1982, vol. 21(no. 4), 239–41. [Google Scholar] [CrossRef] [PubMed]
- Austin, H.; Lally, C.; Benson, J. M.; Whitsett, C.; Hooper, W. C.; Key, N. S. Hormonal contraception, sickle cell trait, and risk for venous thromboembolism among African American women. Am. J. Obstet. Gynecol. 2009, vol. 200(no. 6), 620.e1–620.e3. [Google Scholar] [CrossRef]
- Noubiap, J. J.; Temgoua, M. N.; Tankeu, R.; Tochie, J. N.; Wonkam, A.; Bigna, J. J. Sickle cell disease, sickle trait and the risk for venous thromboembolism: a systematic review and meta-analysis. Thromb. J. 2018, vol. 16. [Google Scholar] [CrossRef] [PubMed]
- Olowe, S. A.; Ransome-Kuti, O. Exchange transfusion using G-6-PG deficient or Hgb-AS blood in icteric neonates. J. Natl. Med. Assoc. 1981, vol. 73(no. 9), 811–9. [Google Scholar]
- KAUFMAN, M.; STEIER, W.; APPLEWHAITE, F.; RUGGIERO, S.; GINSBERG, V. SICKLE-CELL TRAIT IN BLOOD DONORS. Am. J. Med. Sci. 1965, vol. 249, 56–61. [Google Scholar] [CrossRef]
- Noulsri, E.; Lerdwana, S.; Palasuwan, D.; Palasuwan, A. Cell-Derived Microparticles in Blood Products from Blood Donors Deficient in Glucose-6-Phosphate Dehydrogenase. Lab. Med. 2021, vol. 52(no. 6), 528–535. [Google Scholar] [CrossRef]
- Aneke, J.; Barth, D.; Ward, R.; Pendergrast, J.; Kuo, K.; Cserti-Gazdewich, C. The rationale for abandoning sickle trait screening of red blood cell units for patients with sickle cell disease. Transfus. Med. 2019, p. tme.12603. [Google Scholar] [CrossRef]
- Asare, G. A.; Fiador, K.; Tsede, E.; John, L.; Srofenyoh, E. K. Analysis of first apheresis services in Ghana-Greater Accra Regional Hospital. Heliyon 2022, vol. 8(no. 11), e11367. [Google Scholar] [CrossRef]
- Bazuaye, G. N.; Iheanacho, O. E. First successful automated red cell exchange (erythrocytapheresis) in Nigeria for a sickle cell anaemia patient with priapism: A case report. Ann. Biomed. Sci. 2015, vol. 14(no. 2), 68–76. [Google Scholar]
- Jeremiah, Z. Awortu; Jacob, R. Baribefii; Koate, B. Daniel Banavule; Lenox-Prince, T.; Neenwi, M. Edna; Echonwere-Uwikor, B. Eruchi. Fortifying Blood Supply: Challenges and Innovations in Sub-Saharan Africa. In in Public Health; Dogan, N., Ed.; IntechOpen, 2025; vol. 7. [Google Scholar] [CrossRef]
- Albiti, A.H.; Nsiah, K. Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen. Hematology 2014, vol. 19(no. 3), 169–174. [Google Scholar] [CrossRef]
- Kozarski, T. B.; Howanitz, P. J.; Howanitz, J. H.; Lilic, N.; Chauhan, Y. S. Blood transfusions leading to apparent hemoglobin C, S, and O-Arab hemoglobinopathies. Arch. Pathol. Lab. Med. 2006, vol. 130(no. 12), 1830–1833. [Google Scholar] [CrossRef] [PubMed]
- H. M. and J. R. Udomah FP, Isaac IZ, Aliyu N, Erhabor O, Ahmed MH, Yakubu A, Haemoglobin Electrophoretic Patterns, ABO and Rhesus D Blood Groups Distribution among Antenatal Women in Sokoto, Nigeria. Obstet. Gynaecol. Cases - Rev. 2015, vol. 2(no. 2). [CrossRef]
- Ackerman, H.; Usen, S.; Jallow, M.; Sisay-Joof, F.; Pinder, M.; Kwiatkowski, D. P. A comparison of case-control and family-based association methods: the example of sickle-cell and malaria. Ann. Hum. Genet. 2005, vol. 69 no. Pt 5, 559–65. [Google Scholar] [CrossRef]
- Carter, R.; Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 2002, vol. 15(no. 4), 564–94. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S. M.; Parobek, C. M.; Fairhurst, R. M. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect. Dis. 2012, vol. 12(no. 6), 457–468. [Google Scholar] [CrossRef] [PubMed]
- J. A. Rowe; et al., Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc. Natl. Acad. Sci. U. S. A. 2007, vol. 104(no. 44), 17471–6. [CrossRef]
- C. M. Cserti-Gazdewich; et al.,Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. Br. J. Haematol. 2012, vol. 159(no. 2), 223–36. [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. ‘Dual-gene’ malaria-resistance: Therapeutically-rational exchange (T-REX) of group-O sickle trait and group-O C-traittrait red blood cells can be evaluated in Benin and Nigeria. Transfus. Apher. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. Can therapeutically-rational exchange (T-REX) of type-O red blood cells (RBCs) benefit Plasmodium falciparum malaria patients? Transfus. Apher. Sci. 2019, p. S1473050219300746. [Google Scholar] [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. To prevent or ameliorate severe Plasmodium falciparum malaria, why not evaluate the impact of exchange transfusions of sickle cell trait red blood cells? Transfus. Apher. Sci. 2018, vol. 57(no. 1). [Google Scholar] [CrossRef] [PubMed]
- van Genderen, P. J. J.; Hesselink, D. A.; Bezemer, J. M.; Wismans, P. J.; Overbosch, D. Efficacy and safety of exchange transfusion as an adjunct therapy for severe Plasmodium falciparum malaria in nonimmune travelers: a 10-year single-center experience with a standardized treatment protocol. Transfusion (Paris) 2010, vol. 50(no. 4), 787–794. [Google Scholar] [CrossRef] [PubMed]
- Roncoroni, A.J.; Martino, O. A. Therapeutic use of exchange transfusion in malaria. Am. J. Trop. Med. Hyg. 1979, vol. 28(no. 3), 440–444. [Google Scholar] [CrossRef]
- M. Igwe, Ogbuabor, Obeagu OA, EI, Evolutionary biology of antimalarial drug resistance: Understanding of the evolutionary dynamics. In Medicine (Baltimore); Mar 2025. [CrossRef]
- Huijben, S.; Paaijmans, K. P. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol. Appl. 2018, vol. 11(no. 4), 415–430. [Google Scholar] [CrossRef]
- L. E. Fitri; et al.,Antimalarial Drug Resistance: A Brief History of Its Spread in Indonesia. Drug Des. Devel. Ther. 2023, vol. Volume 17, 1995–2010. [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. “Cerebral Malaria: Clinicians, Extracellular Vesicles, and Therapeutically-Rational Exchange (T-REX),” Apr. 03, 2024. In Medicine and Pharmacology. [CrossRef]
- Sadallah, S.; Eken, C.; Schifferli, J. A. Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 2011, vol. 163(no. 1), 26–32. [Google Scholar] [CrossRef]
- Sadallah, S.; Eken, C.; Schifferli, J. A. Erythrocyte-derived ectosomes have immunosuppressive properties. J. Leukoc. Biol. 2008, vol. 84(no. 5), 1316–1325. [Google Scholar] [CrossRef]
- R. Sekar; et al.Therapeutic potential of red blood cell-derived extracellular vesicles in reducing neuroinflammation and protecting against retinal degeneration. 2024. [CrossRef]
- G. Band; et al., Malaria protection due to sickle haemoglobin depends on parasite genotype. Nature 2022, vol. 602(no. 7895), 106–111. [CrossRef]
- Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, vol. 9(no. 6), 477–485. [Google Scholar] [CrossRef]
- Råberg, L. Human and pathogen genotype-by-genotype interactions in the light of coevolution theory. PLOS Genet. 2023, vol. 19(no. 4), e1010685. [Google Scholar] [CrossRef]
- Goheen, M. M.; Campino, S.; Cerami, C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br. J. Haematol. 2017, vol. 179(no. 4), 543–556. [Google Scholar] [CrossRef]
- Rowe, A.; Obeiro, J.; Newbold, C. I.; Marsh, K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect. Immun. 1995, vol. 63(no. 6), 2323–2326. [Google Scholar] [CrossRef]
- Rowe, J. A.; Claessens, A.; Corrigan, R. A.; Arman, M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev. Mol. Med. 2009, vol. 11. [Google Scholar] [CrossRef]
- Rowe, J. A.; Opi, D. H.; Williams, T. N. Blood groups and malaria: Fresh insights into pathogenesis and identification of targets for intervention. Curr. Opin. Hematol. 2009, vol. 16(no. 6), 480–487. [Google Scholar] [CrossRef]
- Ebel, E. R.; Kuypers, F. A.; Lin, C.; Petrov, D. A.; Egan, E. S. Common host variation drives malaria parasite fitness in healthy human red cells. eLife 2021, vol. 10, e69808. [Google Scholar] [CrossRef] [PubMed]
- Riggle, B. A.; Miller, L. H.; Pierce, S. K.; Riggle, B. A.; Miller, L. H.; Pierce, S. K. Desperately Seeking Therapies for Cerebral Malaria. 2020. [Google Scholar] [CrossRef] [PubMed]
- A.M. Dondorp; et al.,Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet Lond. Engl. 2010, vol. 376(no. 9753), 1647–57. [CrossRef]
- H. F. Bugge; et al., A study of blood transfusion services at a district hospital in Malawi. Vox Sang. 2013, vol. 104(no. 1), 37–45. [CrossRef]
- M. S. Datoo; et al.,Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. The Lancet 2024, vol. 403(no. 10426), 533–544. [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. Can Exchange Transfusions Using Red Blood Cells from Donors with Hemoglobin E Trait Prevent or Ameliorate Severe Malaria in Patients with Multi-drug Resistant Plasmodium falciparum? Indian J. Hematol. Blood Transfus. 2018, vol. 34(no. 3). [Google Scholar] [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. Can therapeutically-rational exchange (T-REX) of thalassemic red blood cells improve the clinical course of plasmodium falciparum Malaria? Eurasian J. Med. 2018, vol. 50(no. 3). [Google Scholar] [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. ‘Dual-gene’ malaria-resistance: Therapeutically-rational exchange (T-REX) of group-O sickle trait and group-O C-traittrait red blood cells can be evaluated in Benin and Nigeria. Transfus. Apher. Sci. 2020, vol. 59(no. 3), 102733. [Google Scholar] [CrossRef]
- Jajosky, R. P.; Jajosky, P. G.; Jajosky, A. N. Can therapeutically-rational exchange (T-REX) of type-O red blood cells (RBCs) benefit Plasmodium falciparum malaria patients? Transfus. Apher. Sci. 2019, vol. 58(no. 3). [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. Can the Therapeutically-rational Exchange (T-REX) of Glucose-6-phosphate Dehydrogenase Deficient Red Blood Cells Reduce Plasmodium falciparum Malaria Morbidity and Mortality? J. Nepal Health Res. Counc. 2018, vol. 16(no. 1). [Google Scholar] [CrossRef]
- Jajosky, R. P.; Jajosky, A. N.; Jajosky, P. G. Can exchange transfusions using red blood cells from donors with Southeast Asian ovalocytosis prevent or ameliorate cerebral malaria in patients with multi-drug resistant Plasmodium falciparum ? Transfus. Apher. Sci. 2017, vol. 56(no. 6), 865–866. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 2005, vol. 77(no. 2), 171–92. [Google Scholar] [CrossRef] [PubMed]
- Shriner, D.; Rotimi, C. N. Whole-Genome-Sequence-Based Haplotypes Reveal Single Origin of the Sickle Allele during the Holocene Wet Phase. Am. J. Hum. Genet. 2018, vol. 102(no. 4), 547–556. [Google Scholar] [CrossRef]
- Roubinet, F.; Calafell, F.; Jin, F.; Bertanpetit, J.; Saitou, N.; Blancher, A. Evolution of the. 2004, vol. 44, no. May, 707–715. [Google Scholar]
- Weir, E. G.; King, K. E.; Ness, P. M.; Eshleman, S. H. Automated RBC exchange transfusion:treatment for cerebral malaria. Transfusion (Paris) 2000, vol. 40(no. 6), 702–707. [Google Scholar] [CrossRef] [PubMed]
- B. A. Riggle; et al., CD8+ T cells target cerebrovasculature in children with cerebral malaria. J. Clin. Invest. 2020, vol. 130(no. 3), 1128–1138. [CrossRef]
- A.Ferreira; et al.,Sickle Hemoglobin Confers Tolerance to Plasmodium Infection. CELL 2011, vol. 145, 398–409. [CrossRef]
- Pinheiro, M. K.; Tamagne, M.; Elayeb, R.; Andrieu, M.; Pirenne, F.; Vingert, B. Blood microparticles are a component of immune modulation in red blood cell transfusion. Eur. J. Immunol. 2020, vol. 50(no. 8), 1237–1240. [Google Scholar] [CrossRef]
- Cabrera, G.; Cot, M.; Migot-nabias, F.; Kremsner, P. G.; Deloron, P.; Luty, A. J. F. The Sickle Cell Trait Is Associated with Enhanced Immunoglobulin G Antibody Responses to Plasmodium falciparum Variant Surface Antigens; 2005; pp. 1631–1638. [Google Scholar]
- Sunseri, T. Blood Trials: Transfusions, Injections, and Experiments in Africa, 1890-1920. J. Hist. Med. Allied Sci. 2016, vol. 71(no. 3), 293–321. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S. G.; Kagu, M. B.; Ibrahim, U. A.; Bukar, A. A. Impact of sickle cell trait on the thrombotic risk associated with non-O blood groups in northern Nigeria. Blood Transfus. 2015, vol. 13(no. 4), 639–643. [Google Scholar] [CrossRef]
- Watanaboonyongcharoen, P.; Park, Y. A.; Poisson, J. L.; Brecher, M. E. Rapid increases in parasitemia following red cell exchange for malaria. J. Clin. Apheresis 2011, vol. 26(no. 6), 315–319. [Google Scholar] [CrossRef] [PubMed]
- A.S. Lawrie; et al., “Procoagulant activity in patients with sickle cell trait,” Blood Coagul. Fibrinolysis 2012, vol. 23(no. 4), 268–270. [CrossRef]
- Esoh, K.; Wonkam, A. Evolutionary history of sickle-cell mutation: implications for global genetic medicine. Hum. Mol. Genet. 2021, vol. 30(no. R1), R119–R128. [Google Scholar] [CrossRef]
- Cserti-Gazdewich, C. M. Plasmodium falciparum malaria and carbohydrate blood group evolution. ISBT Sci. Ser. 2010, vol. 5(no. n1), 256–266. [Google Scholar] [CrossRef]
- T. M. Lopera-Mesa; et al.,Effect of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol. 2015, vol. 2(no. 4), e140–9. [CrossRef] [PubMed]
- C. M. Ngou; et al., Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers. BMC Infect. Dis. 2023, vol. 23(no. 1), 317. [CrossRef]
- Anani, W. Q.; Smith, G. P.; Irani, M.; Puca, K. E. A report of cerebral malaria treated with automated red blood cell exchange. Transfusion (Paris) 2017, vol. 57(no. 4), 985–988. [Google Scholar] [CrossRef] [PubMed]
- Nik Kamarudin, N.; Sat, J.; Mohd Zaidi, N.; Mustaffa, K. Evolution of specific RNA aptamers via SELEX targeting recombinant human CD36 protein: A candidate therapeutic target in severe malaria. Asian Pac. J. Trop. Biomed. 2020, vol. 10(no. 1), 23–32. [Google Scholar] [CrossRef]
- Nik Kamarudin, N.; Mohammed, N.; Mustaffa, K. Aptamer Technology: Adjunct Therapy for Malaria. Biomedicines 2017, vol. 5(no. 1), 1. [Google Scholar] [CrossRef] [PubMed]
- Kiene, H.; Hamre, H. J.; Kienle, G. S. In Support of Clinical Case Reports: A System of Causality Assessment. Glob. Adv. Health Med. 2013, vol. 2(no. 2), 64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
