Submitted:
05 February 2026
Posted:
06 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
1.1. Historical and Technological Evolution of Metal Packaging
1.2. Methodological Note and Scope
2. Material Families and Typologies;
2.1. Aluminum Alloys
2.1.1. Composition and Metallurgical Architecture
2.1.2. Microstructure and Processing Routes
2.1.3. Barrier and Mechanical Properties
2.1.4. Surface Chemistry, Coating Interactions, and Corrosion Behaviour
2.1.5. Mechanical, Sealing, and Functional Performance
2.1.6. Packaging Applications and Suitability
2.2. Tinplate (Tin-Coated Steel)
2.2.1. Composition and Layered Metallurgical Architecture
2.2.2. Microstructure and Processing Routes
2.2.3. Barrier and Mechanical Properties
2.2.4. Surface Chemistry, Coating Interactions, and Corrosion Behaviour
2.2.5. Mechanical, Sealing, and Functional Performance
2.2.6. Packaging Applications and Suitability — Tinplate
2.3. Tin-Free Steel (TFS/ECCS)
2.3.1. Composition and Metallurgical Architecture
- Metallic chromium layer (Cr0) — dense, continuous, and extremely thin, forming a chemically inert and non-reactive interface with the steel substrate.
- Hydrated chromium oxide/hydroxide layer (CrOOH/Cr2O3) — amorphous and chemically stable, providing corrosion resistance and acting as an effective primer for organic coatings.
2.3.2. Microstructure and Processing Routes
2.3.3. Barrier and Mechanical Properties
2.3.4. Surface Chemistry, Coating Interactions, and Corrosion Behaviour
2.3.5. Mechanical, Sealing, and Functional Performance
2.3.6. Packaging Applications and Suitability — Tin-Free Steel (TFS/ECCS)
2.4. Stainless Steels and Specialty Alloys
2.4.1. Composition and Metallurgical Architecture
2.4.2. Microstructure and Processing Routes
2.4.3. Barrier and Mechanical Properties
2.4.4. Surface Chemistry, Corrosion Behaviour, and Interactions with Coatings or Products
2.4.5. Mechanical, Sealing, and Functional Performance
2.4.6. Packaging Applications and Suitability — Stainless Steels and Specialty Alloys
2.5. Metal Matrix Composites (MMCs)
2.5.1. Composition and Metallurgical Architecture
2.5.2. Microstructure and Processing Routes
2.5.3. Barrier and Mechanical Properties
2.5.4. Surface Chemistry, Coating Interactions, and Corrosion Behaviour
2.5.5. Mechanical, Sealing, and Functional Performance
2.5.6. Packaging Applications and Suitability — Metal Matrix Composites (MMCs)
2.6. Complementary Metallic Packaging Architectures
2.6.1. Fully Metallic Packaging Systems
2.6.2. Metal–Polymer and Metal–Paper Laminates (Hybrid Barrier Architectures)
2.6.3. Metallic Fillers and Metal-Based Coatings in Packaging Systems
2.7. Application-Driven Selection of Metallic Packaging Systems
3. Structure–Property Relationships in Metallic Packaging Systems
- Mechanical and Microstructural Domain, governing deformation, stiffness, buckling resistance, and formability.
- Surface Chemistry, Barrier Performance and Corrosion Domain, which determines the stability of protective films, coating adhesion, and resistance to chemical degradation.
- Thermo-Mechanical Stability Domain, describing how metals respond to thermal loading, retort cycles, and coefficient-of-thermal-expansion (CTE) mismatch.
- Processing–Structure–Performance Domain, highlighting the coupling between industrial processes and final package reliability.
3.1. Mechanical and Microstructural Behavior
3.2. Surface Chemistry, Barrier Performance and Corrosion Mechanisms
3.3. Thermo-Mechanical Stability
3.4. Processing–Structure–Performance Coupling
3.5. Comparative Evaluation Across Metallic Packaging Systems
4. Regulatory and Safety Framework for Metallic Packaging
4.1. Regulatory Architecture for Metals in Food, Pharmaceutical and Technical Packaging
4.1.1. European Union Framework
- endanger human health,
- cause an unacceptable change in food composition,
- alter organoleptic characteristics.
- Commission Regulation (EU) 10/2011 (for polymeric coatings used on metals),
- EN 602:2004 and EN 10333 (for tinplate and TFS),
- EN 13130 / EN 1186 for migration testing,
- EFSA guidelines on specific migration limits (SMLs) for aluminum, tin, chromium, nickel, and other alloying elements.
4.1.2. United States and International Standards
- FDA Title 21 CFR, which defines permitted materials and coating substances,
- NSF standards for reusable metallic containers,
- ANSI/ASTM protocols for corrosion and leaching tests.
- migration testing (ISO 4531 for ceramics extended to metals in some jurisdictions),
- coating adhesion and curing (ISO 4624),
- corrosion testing (ISO 9227, salt-spray simulations),
- lacquer continuity (ISO 8301, EN 10333).
4.2. Migration Phenomena and Safety Assessment
4.2.1. Metallic Ion Migration
4.2.2. Migration from Coatings and Functional Additives
- nanoparticle detachment,
- dissolution into ionic species,
- aggregation and transport in food matrices.
4.2.3. Accelerated Testing and Predictive Assessment
- electrochemical impedance spectroscopy (EIS) to monitor coating degradation,
- thermal cycling to simulate retort and storage conditions,
- pH cycling to evaluate susceptibility to episodic exposure,
- salt-spray (ISO 9227) for corrosion benchmarking.
4.3. Safety Considerations in High-Value and Reusable Metallic Packaging
- high chemical inertness,
- resistance to thermal sterilization,
- repeatable sealing performance,
- minimal particle shedding,
- tight dimensional tolerances.
4.4. Regulatory Trends and Outlook
- high-temperature sterilization,
- high-voltage electrical environments,
- long-term storage,
- repeated mechanical cycling.
4.5. Concluding Remarks
5. Circularity and Sustainability of Metallic Packaging
5.1. Circularity Beyond Recyclability: A Life-Cycle Perspective
5.2. Energy Demand, Alloy Complexity and Production Routes
5.3. Recycling Efficiency, Purity of Recovered Streams and Real Recovery
5.4. Environmental Trade-Offs and Sustainability Metrics
5.5. Limits of Circularity: Multilayers and Metal–Matrix Composites
5.6. Outlook: From Material Choice to System Design
6. Discussion and Future Perspectives on Metallic Packaging Systems
6.1. Safety, Migration, and Coating Integrity
6.2. Toxicological Concerns and Regulatory Gaps
6.3. Circularity Limits of Coated and Hybrid Systems
6.4. Emerging Coating Technologies and Advanced Systems
6.5. Strategic Outlook
7. Conclusions
Data Availability Statement
Appendix A. Regulatory and Standardization Framework for Metallic Packaging
A.1 European Union Regulatory Framework
- Regulation (EC) No 1935/2004
- Commission Regulation (EU) No 10/2011
- EN 1186
- EN 13130
- EN 602:2004
- EN 10333
- EFSA guidance documents
- Council of Europe technical guidelines on metals and alloys in contact with food
A.2 International and ISO Standards
- ISO 9227:2023 (UNI EN ISO 9227:2023)
- ISO 4624
- ISO 8301
- ISO 4531
A.3 United States Regulatory and Pharmacopoeial Standards
- FDA Title 21 Code of Federal Regulations (21 CFR)
- NSF standards
-
United States Pharmacopeia (USP)
- ○
- USP <661> — Plastic packaging systems and materials of construction (applied by analogy to coated metallic pharmaceutical containers).
- ○
- USP <671> — Containers — Performance testing, including permeation and integrity requirements for pharmaceutical packaging.
A.4 Scope and Use Within This Review
- applicable legal and regulatory constraints,
- standardized methods used for migration, corrosion, and coating-performance assessment,
- differences between food, pharmaceutical, reusable, and technical packaging requirements.
References
- Kerry, J. Aluminium Foil Packaging. In Packaging Technology; Elsevier, 2012; pp. 163–177. ISBN 978-1-84569-665-8. [Google Scholar]
- Deshwal, G.Kr.; Panjagari, N.R. Review on Metal Packaging: Materials, Forms, Food Applications, Safety and Recyclability. J Food Sci Technol 2020, 57, 2377–2392. [Google Scholar] [CrossRef]
- Pagnotta, L. Packaging Materials: Past, Present and Future. CMS 2024, 17, 275–279. [Google Scholar] [CrossRef]
- Wu, Y.; Ruffley, K.; Pascall, M.A. Investigation and Mechanism of Headspace Corrosion in Metal Cans Filled Chicken Noodle Soup. Packag Technol Sci 2024, 37, 187–197. [Google Scholar] [CrossRef]
- Montanari, A.; Zurlini, C. Influence of Side Stripe on the Corrosion of Unlacquered Tinplate Cans for Food Preserves. Packaging Technology and Science 2018, 31, 15–25. [Google Scholar] [CrossRef]
- Engler, O. Control of Texture and Earing in Al Packaging Sheet: A Review. Metall Mater Trans A 2025, 56, 2293–2306. [Google Scholar] [CrossRef]
- Verma, M.K.; Shakya, S.; Kumar, P.; Madhavi, J.; Murugaiyan, J.; Rao, M.V.R. Trends in Packaging Material for Food Products: Historical Background, Current Scenario, and Future Prospects. J Food Sci Technol 2021, 58, 4069–4082. [Google Scholar] [CrossRef]
- Pandey, S.; Mishra, K.K.; Ghosh, P.; Singh, A.K.; Jha, S.K. Characterization of Tin-Plated Steel. Front. Mater. 2023, 10, 1113438. [Google Scholar] [CrossRef]
- Wint, N.; De Vooys, A.C.A.; McMurray, H.N. The Corrosion of Chromium Based Coatings for Packaging Steel. Electrochimica Acta 2016, 203, 326–336. [Google Scholar] [CrossRef]
- Parenti, A.; Masella, P.; Spugnoli, P.; Mazzanti, L.; Migliorini, M. Stainless Steel Bottles for Extra Virgin Olive Oil Packaging: Effects on Shelf-life. Packag Technol Sci 2010, 23, 383–391. [Google Scholar] [CrossRef]
- Allman, A.; Jewell, E.; De Vooys, A.; Hayes, R.; McMurray, H.N. Food Packaging Simulant Failure Mechanisms in next Generation Steel Packaging. Packag Technol Sci 2019, 32, 441–455. [Google Scholar] [CrossRef]
- Schneider-Ramelow, M.; Hutter, M.; Oppermann, H.; Göhre, J.-M.; Schmitz, S.; Hoene, E.; Lang, K.-D. Technologies and Trends to Improve Power Electronic Packaging. International Symposium on Microelectronics 2011, 2011, 000430–000437. [Google Scholar] [CrossRef]
- Lai, L.; Niu, B.; Bi, Y.; Li, Y.; Yang, Z. Advancements in SiC-Reinforced Metal Matrix Composites for High-Performance Electronic Packaging: A Review of Thermo-Mechanical Properties and Future Trends. Micromachines 2023, 14, 1491. [Google Scholar] [CrossRef]
- Shukla, S.; Chernyaev, A.; Halli, P.; Aromaa, J.; Lundström, M. Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media. Metals 2023, 13, 1118. [Google Scholar] [CrossRef]
- Sheehan, M.; Montgomery, A.; Goddard, J.M.; Sacks, G.L. Lactic and Acetic Acids in Sour Beers Promote Corrosion During Aluminum Beverage Can Storage. Journal of the American Society of Brewing Chemists 2025, 83, 126–135. [Google Scholar] [CrossRef]
- Cooper, J.E.; Kendig, E.L.; Belcher, S.M. Assessment of Bisphenol A Released from Reusable Plastic, Aluminium and Stainless Steel Water Bottles. Chemosphere 2011, 85, 943–947. [Google Scholar] [CrossRef]
- Seref, N.; Cufaoglu, G. Food Packaging and Chemical Migration: A Food Safety Perspective. Journal of Food Science 2025, 90, e70265. [Google Scholar] [CrossRef]
- Berger, K.R. A Brief History of Packaging. EDIS 1969, 2003. [Google Scholar] [CrossRef]
- Hook, P.; Heimlich, J. E. A History of Packaging; 2017. [Google Scholar]
- Risch, S.J. Food Packaging History and Innovations. J. Agric. Food Chem. 2009, 57, 8089–8092. [Google Scholar] [CrossRef]
- Page, B.; Edwards, M.; May, N. Food and Beverage Packaging Technology, 5.1 Metal Packaging; Second Edition.; Richard Coles and Mark Kirwan., 2011.
- Baker, H.A. The Canning Industry—Some Accomplishments and Opportunities along Technical Lines. J. Ind. Eng. Chem. 1918, 10, 69–71. [Google Scholar] [CrossRef]
- Felmingham, J.D. Development of Beer Canning in Britain. Journal of the Institute of Brewing 1960, 66. [Google Scholar] [CrossRef]
- Chang, L.; Wu, M.; Hu, Z.; Zhang, L.; Qu, X. Effect of Process Parameters on Residual Gas in Metal Package. Vacuum 2024, 230, 113686. [Google Scholar] [CrossRef]
- Jiao, Z.; Kang, H.; Zhou, B.; Kang, A.; Wang, X.; Li, H.; Yu, Z.; Ma, L.; Zhou, K.; Wei, Q. Research Progress of Diamond/Aluminum Composite Interface Design. Functional Diamond 2022, 2, 25–39. [Google Scholar] [CrossRef]
- Gautam, A.; Komal, P.; Gautam, P.; Sharma, A.; Kumar, N.; Jung, J.P. Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications. Metals 2021, 11, 329. [Google Scholar] [CrossRef]
- Joshi, N.C.; Negi, P.B.; Gururani, P. A Review on Metal/Metal Oxide Nanoparticles in Food Processing and Packaging. Food Sci Biotechnol 2024, 33, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-X.; Li, R.-C.; Gao, L.-Y.; Meng, Z.-C.; Liu, C.; Liu, Z.-Q. Study on the Cu Microstructure and Sn Supply Affecting the Interfacial Reaction of Cu/Sn Nanowires for Advanced Electronic Packaging. ACS Appl. Electron. Mater. 2025, 7, 1472–1482. [Google Scholar] [CrossRef]
- Tong, Z.; Shen, Z.; Zhang, Y. Aluminum/Diamond Composites and Their Applications in Electronic Packaging. In Proceedings of the 2007 8th International Conference on Electronic Packaging Technology; IEEE: Shanghai, China, 2007; pp. 1–7. [Google Scholar]
- Huang, S.; Zhao, Y.; Xie, H.; Guo, H.; Peng, L.; Zhang, W. Microstructure and Properties of Aluminum Alloy/Diamond Composite Materials Prepared by Laser Cladding. Materials 2024, 17, 5280. [Google Scholar] [CrossRef]
- Taroco, H.A.; Martins, T.D.; Coelho Madeira, A.P.; Souza, A.G.; Taroco, C.G.; Garcia, E.M.; Melo, J.O.F.; Lima, L.T. Corrosion Study of Cola Soft Drink Cans. Sci. Electronic Arch 2024, 17. [Google Scholar] [CrossRef]
- Soares, B.M.C.; Dantas, S.T.; Anjos, C.A.R. Corrosion of Aluminum for Beverage Packaging in Acidic Media Containing Chlorides and Copper Ions. J Food Process Engineering 2017, 40, e12571. [Google Scholar] [CrossRef]
- Stahl, T.; Taschan, H.; Brunn, H. Aluminium Content of Selected Foods and Food Products. Environ Sci Eur 2011, 23, 37. [Google Scholar] [CrossRef]
- Yokel, R.A. Aluminum in Beverages and Foods: A Comprehensive Compilation of Regulations; Concentrations in Raw, Prepared, and Stored Beverages and Foods; and Intake. Comp Rev Food Sci Food Safe 2025, 24, e70175. [Google Scholar] [CrossRef]
- Bolzon, G.; Cornaggia, G.; Shahmardani, M.; Giampieri, A.; Mameli, A. Aluminum Laminates in Beverage Packaging: Models and Experiences. Beverages 2015, 1, 183–193. [Google Scholar] [CrossRef]
- Food Packaging Technology; Coles, R., Ed.; Packaging technology series; Blackwell Publ. [u.a.]: Oxford, 2003; ISBN 978-0-8493-9788-2. [Google Scholar]
- Pejić, J.N.; Jegdić, B.V.; Radojković, B.M.; Simović, A.R.; Popović, A.S.; Eraković Pantović, S.G.; Marunkić, D.D. Causes of Occurrence and Methods of Prevention of Corrosion of Cans for Food Products. Russ J Electrochem 2025, 61, 446–458. [Google Scholar] [CrossRef]
- Cova Caiazzo, F.; Brambilla, L.; Montanari, A.; Mischler, S. Chemical and Morphological Characterization of Commercial Tinplate for Food Packaging. Surface & Interface Analysis 2018, 50, 430–440. [Google Scholar] [CrossRef]
- Spišák, E.; Džupon, M.; Majerníková, J.; Spišáková Duľová, E. FAILURE OF COATINGS OF TINPLATES. Acta Metall Slovaca 2015, 21, 213–219. [Google Scholar] [CrossRef]
- Priyadharshini, A.; Xavier, J.R. Innovative Reduced Graphene Oxide/Polycysteine/Coper Titanate Composite Coating for Corrosion-Resistant and Antibacterial Tinplate in Food Packaging. Results in Engineering 2025, 27, 106859. [Google Scholar] [CrossRef]
- Xavier, J.R.; Vinodhini, S.P.; Priyadharshini, A. Multifunctional Epoxy-Based Nanocomposite Coating for Tinplate: Enhancing Food Packaging with Superior Mechanical, Anticorrosion, and Antimicrobial Properties. International Journal of Biological Macromolecules 2025, 309, 142671. [Google Scholar] [CrossRef]
- Ros, E.; Fernandez, V.; Gautron, E.; Fairley, N.; Merabet, A.; Souron, E.; Turgis, J.; Humbert, B.; Caldes, M.T. Multi-Scale Characterization of a Chromium-Free Passivation Layer for Tinplate Food–Packaging. Applied Surface Science 2026, 721, 165498. [Google Scholar] [CrossRef]
- Albuquerque, T.L.M.; Mattos, C.A.; Scur, G.; Kissimoto, K. Life Cycle Costing and Externalities to Analyze Circular Economy Strategy: Comparison between Aluminum Packaging and Tinplate. Journal of Cleaner Production 2019, 234, 477–486. [Google Scholar] [CrossRef]
- Teixeira, M.S.; Mata, T.M.; Lourenço, A.; Oliveira, F.; Oliveira, J.; Martins, A.A. Life Cycle Assessment of Tinplate Aerosol Cans: Evaluating the Role of Photovoltaic Energy and Green Hydrogen in Environmental Impact Reduction. Environments 2025, 12, 73. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging Principles and Practice; CRC Press, 2013. [Google Scholar]
- Melvin, C.; Jewell, E.; De Vooys, A.; Lammers, K.; Murray, N.M. Surface and Adhesion Characteristics of Current and Next Generation Steel Packaging Materials. J Package Technol Res 2018, 2, 93–103. [Google Scholar] [CrossRef]
- Kefallinou, Z. The Impact of Curing Time on the Electrochemical Behaviour of Intact Epoxy-Phenolic Coatings on Tinplate and Tin-Free Steel; University of Manchester, 2016. [Google Scholar]
- Wint, N.; Warren, D.J.; DeVooys, A.C.A.; McMurray, H.N. The Use of Chromium and Chromium (III) Oxide PVD Coatings to Resist the Corrosion Driven Coating Delamination of Organically Coated Packaging Steel. J. Electrochem. Soc. 2020, 167, 141506. [Google Scholar] [CrossRef]
- Newson, T. Stainless Steel for Hygienic Applications. BSSA Conference – Stainless Solutions for a Sustainable Future 2003.
- Mazinanian, N.; Herting, G.; Wallinder, I.O.; Hedberg, Y. Metal Release and Corrosion Resistance of Different Stainless Steel Grades in Simulated Food Contact. Corrosion 2016, 72, 775–790. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Franco, F.; Santamaria, M. Corrosion of Stainless Steel in Food and Pharmaceutical Industry. Current Opinion in Electrochemistry 2021, 29, 100760. [Google Scholar] [CrossRef]
- Rossi, S.; Leso, S.M.; Calovi, M. Study of the Corrosion Behavior of Stainless Steel in Food Industry. Materials 2024, 17, 1617. [Google Scholar] [CrossRef] [PubMed]
- Jullien, C.; Bénézech, T.; Carpentier, B.; Lebret, V.; Faille, C. Identification of Surface Characteristics Relevant to the Hygienic Status of Stainless Steel for the Food Industry. Journal of Food Engineering 2003, 56, 77–87. [Google Scholar] [CrossRef]
- Baig, M.M.A.; Hassan, S.F.; Saheb, N.; Patel, F. Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties. Materials 2021, 14, 6257. [Google Scholar] [CrossRef]
- Shen, Y.-L.; Needleman, A.; Suresh, S. Coefficients of Thermal Expansion of Metal-Matrix Composites for Electronic Packaging. Metall Mater Trans A 1994, 25, 839–850. [Google Scholar] [CrossRef]
- Lee, H.S.; Jeon, K.Y.; Kim, H.Y.; Hong, S.H. Fabrication Process and Thermal Properties of SiCp/Al Metal Matrix Composites for Electronic Packaging Applications. [CrossRef]
- Bukhari, M.Z.; Brabazon, D.; Hashmi, M.S.J. Application of Metal Matrix Composite of CuSiC and AlSiC as Electronics Packaging Materials. In Proceedings of the The 28th international manufacturing conference, 2011. [Google Scholar]
- Sidhu, S.S.; Kumar, S.; Batish, A. Metal Matrix Composites for Thermal Management: A Review. Critical Reviews in Solid State and Materials Sciences 2016, 41, 132–157. [Google Scholar] [CrossRef]
- Perron, C.; Kromm, F.-X.; Lacoste, E.; Arvieu, C. Thermal Numerical Simulation for Metal Matrix Composite Design: Application to Weight Saving in Electronic Packaging for Aeronautics. Case Studies in Thermal Engineering 2017, 10, 484–491. [Google Scholar] [CrossRef]
- Zweben, C. Metal-Matrix Composites for Electronic Packaging. JOM 1992, 44, 15–23. [Google Scholar] [CrossRef]
- Long, R.H. Metal Drums and Cylinders. Ind. Eng. Chem. 1955, 47, 1193–1195. [Google Scholar] [CrossRef]
- Sebbe, N.P.V.; Silva, F.J.G.; Brito, M.F.; Viamonte, A.J.; Gavina, A.; Figueiredo, I.; Sales-Contini, R.C.M. Geometric Optimization and Thickness Reduction of Metal Packaging for the Transportation of Dangerous Goods: A New Design Paradigm. Results in Engineering 2026, 29, 109081. [Google Scholar] [CrossRef]
- Engelmann, A.; Zeeuw Van Der Laan, A.; Aid, G.; Nybom, L.; Aurisicchio, M. DEVELOPING THE MATERIAL-SERVICE SYSTEM CONCEPT: A CASE STUDY OF STEEL INDUSTRIAL DRUMS. Proc. Des. Soc. 2021, 1, 1223–1232. [Google Scholar] [CrossRef]
- Whitman, C.T.; Mehan, G.T.; Grubbs, G.H.; Frace, S.E.; Anderson, D.F.; Matuszko, J.; Guilaran, Y.-T.; Tinger, J.; Covington, J. Preliminary Data Summary for Industrial Container and Drum Cleaning Industry - 2002.
- Abdel Rahman, R.O.; Ojovan, M.I. Nuclear Waste Management: A Mini Review on Waste Package Characterization Approaches. Science and Technology of Nuclear Installations 2024, 2024, 2980143. [Google Scholar] [CrossRef]
- Zarei, H.; Buchignani, M.; Giangrandi, S.; Paggi, M. Digital Twin Model of Paper–Aluminum Laminates for Sustainable Packaging. ACS Omega 2024, 9, 42386–42395. [Google Scholar] [CrossRef] [PubMed]
- Al Mahmood, A.; Hossain, R.; Sahajwalla, V. Microrecycling of the Metal–Polymer-Laminated Packaging Materials via Thermal Disengagement Technology. SN Appl. Sci. 2019, 1, 1106. [Google Scholar] [CrossRef]
- Al Mahmood, A.; Hossain, R.; Sahajwalla, V. Investigation of the Effect of Laminated Polymers in the Metallic Packaging Materials on the Recycling of Aluminum by Thermal Disengagement Technology (TDT). Journal of Cleaner Production 2020, 274, 122541. [Google Scholar] [CrossRef]
- Schmidt, J.; Grau, L.; Auer, M.; Maletz, R.; Woidasky, J. Multilayer Packaging in a Circular Economy. Polymers 2022, 14, 1825. [Google Scholar] [CrossRef]
- Souza, G.F.A.D.; Pereira, M.M.L.; Palma E Silva, A.A.; Capuzzo, V.M.S.; Machado, F. Opuntia Ficus-Indica Mucilage: A Sustainable Bio-Additive for Cementitious Materials. Construction and Building Materials 2024, 456, 139254. [Google Scholar] [CrossRef]
- Ahari, H.; Fakhrabadipour, M.; Paidari, S.; Goksen, G.; Xu, B. Role of AuNPs in Active Food Packaging Improvement: A Review. Molecules 2022, 27, 8027. [Google Scholar] [CrossRef]
- Paidari, S.; Zamindar, N.; Tahergorabi, R.; Kargar, M.; Ezzati, S.; Shirani, N.; Musavi, S.H. Edible Coating and Films as Promising Packaging: A Mini Review. Food Measure 2021, 15, 4205–4214. [Google Scholar] [CrossRef]
- De Sousa, M.S.; Schlogl, A.E.; Estanislau, F.R.; Souza, V.G.L.; Dos Reis Coimbra, J.S.; Santos, I.J.B. Nanotechnology in Packaging for Food Industry: Past, Present, and Future. Coatings 2023, 13, 1411. [Google Scholar] [CrossRef]
- Ha, O.-Y.; Sung, J.; Han, Y.; Park, J.; Oh, S. Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment. Metals 2025, 16, 22. [Google Scholar] [CrossRef]
- Kim, M. Review of Recent Issues in Food Safety of Packaging Materials: Regulatory Concerns and Scientific Findings. KOREAN JOURNAL OF PACKAGING SCIENCE AND TECHNOLOGY 2025, 31, 11–27. [Google Scholar] [CrossRef]
- Santamaria, M.; Tranchida, G.; Di Franco, F. Corrosion Resistance of Passive Films on Different Stainless Steel Grades in Food and Beverage Industry. Corrosion Science 2020, 173, 108778. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Zhang, W.; Abedini, A.; Khezerlou, A.; Shariatifar, N.; Assadpour, E.; Zhang, F.; Jafari, S.M. Intelligent Packaging Systems for the Quality and Safety Monitoring of Meat Products: From Lab Scale to Industrialization. Food Control 2024, 160, 110359. [Google Scholar] [CrossRef]
- Niero, M.; Manzardo, A. Chapter 10. Case Study – Packaging. In Life Cycle Assessment; Borrion, A., Black, M.J., Mwabonje, O., Eds.; Royal Society of Chemistry: Cambridge, 2021; pp. 232–261. ISBN 978-1-78801-445-8. [Google Scholar]
- Bher, A.; Auras, R. Life Cycle Assessment of Packaging Systems: A Meta-Analysis to Evaluate the Root of Consistencies and Discrepancies. Journal of Cleaner Production 2024, 476, 143785. [Google Scholar] [CrossRef]
- Warrings, R.; Fellner, J. Management of Aluminium Packaging Waste in Selected European Countries. Waste Manag Res 2019, 37, 357–364. [Google Scholar] [CrossRef]
- Lederer, J.; Bartl, A.; Blasenbauer, D.; Breslmayer, G.; Gritsch, L.; Hofer, S.; Lipp, A.-M.; Mühl, J. A REVIEW OF RECENT TRENDS TO INCREASE THE SHARE OF POST-CONSUMER PACKAGING WASTE TO RECYCLING IN EUROPE. Detritus 2022, 3–17. [Google Scholar] [CrossRef]
- Niero, M.; Olsen, S.I. Circular Economy: To Be or Not to Be in a Closed Product Loop? A Life Cycle Assessment of Aluminium Cans with Inclusion of Alloying Elements. Resources, Conservation and Recycling 2016, 114, 18–31. [Google Scholar] [CrossRef]
- Pereira, Antonio Clareti FROM CAN TO SHEET: A CRITICAL REVIEW OF ALUMINUM CAN RECYCLING PROCESSES, TECHNOLOGIES, AND SUSTAINABILITY DIMENSIONS (2020–2025). Engenharias, 2025, 29.
- Astarita, A.; De Luca, M.; Sinagra, C. Impact of Rolling Processes in the Production of Aluminum Packaging Assessed through LCA. Int J Life Cycle Assess 2023, 28, 1756–1772. [Google Scholar] [CrossRef]
- Warrings, R.; Fellner, J. How to Increase Recycling Rates. The Case of Aluminium Packaging in Austria. Waste Manag Res 2021, 39, 53–62. [Google Scholar] [CrossRef]
- Riedewald, F.; Wilson, E.; Patel, Y.; Vogt, D.; Povey, I.; Barton, K.; Lewis, L.; Caris, T.; Santos, S.; O’Mahoney, M.; et al. Recycling of Aluminium Laminated Pouches and Tetra Pak Cartons by Molten Metal Pyrolysis – Pilot-Scale Experiments and Economic Analysis. Waste Management 2022, 138, 172–179. [Google Scholar] [CrossRef]
- Barot, R.P.; Desai, R.P.; Sutaria, M.P. Recycling of Aluminium Matrix Composites (AMCs): A Review and the Way Forward. Inter Metalcast 2023, 17, 1899–1916. [Google Scholar] [CrossRef]
- Melvin, C.; Jewell, E.; Miedema, J.; Lammers, K.; De Vooys, A.; Allman, A.; McMurray, N. Identifying Interlayer Surface Adhesion Failure Mechanisms in Tinplate Packaging Steels. Packag Technol Sci 2019, 32, 345–355. [Google Scholar] [CrossRef]
- Li, T.; Wei, Y.; Li, R.; Liu, J.; Hou, J.; Shi, S.; Geng, Q.; Zhang, Y.; Qiu, R.; Ouyang, Y. Bioinspired Edible Oil-Infused Coating on Tinplate for Food Packaging: Preparation and Enhanced Corrosion Resistance, Anti-Icing, and Anti-Sticking Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 709, 136093. [Google Scholar] [CrossRef]
- Kajiyama, T.; Kanazaki, K.; Venkatraman, G.; Abdul-Rahman, P.S.; Matsushima, A. Migration of Bisphenol A and Its Derivatives From Epoxy Coatings and Demand for BPA-NI Products: Scientific Insights and Perspectives Leading to Regulation (EU) 2024/3190. An Asian Journal 2025. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.-M.B.H.; Elmasry, M.R.; Bin Jardan, Y.A.; El-Wekil, M.M. Smart Fluorometric Sensing of Metal Contaminants in Canned Foods: A Carbon Dot-Based Dual-Response System for Quantifying Aluminum and Cobalt Ions. RSC Adv. 2025, 15, 6962–6973. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Zhang, W.; Assadpour, E.; Zhang, F.; Jafari, S.M. Self-Healing Packaging Films/Coatings for Food Applications; an Emerging Strategy. Advances in Colloid and Interface Science 2025, 339, 103423. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, K.; Bayan, A.; Mishra, P. Comprehensive Review on the Integration of Self-Healing Polymers with Smart Food Traceability: Scope, Application and Challenges. Sustainable Food Technol. 2026, 10.1039.D5FB00420A. [Google Scholar] [CrossRef]
- Bócoli, P.F.J.; Gomes, V.E.D.S.; Maia, A.A.D.; Marangoni Júnior, L. Perspectives on Eco-Friendly Food Packaging: Challenges, Solutions, and Trends. Foods 2025, 14, 3062. [Google Scholar] [CrossRef] [PubMed]














| Property | Aluminum (Wu, 2024) [4] |
Coated Steel (de Sousa, 2023) [73] |
Stainless Steel (Stahl, 2011) [33] |
Al–Diamond Composites (Jiao, 2022) [25] |
|---|---|---|---|---|
| Composition | Pure aluminum or Al alloys (Mg, Cu, Zn) | Carbon steel with tin (tinplate) or chromium (TFS) coating | Steel alloy with Cr ≥10.5% and possible Ni | Aluminum reinforced with diamond or SiC |
| Characteristics | Lightweight, recyclable, intrinsic metallic-barrier | High strength, cost-effective, coating-dependent performance | Chemically stable, reusable, passive surface | High thermal conductivity, low thermal expansion |
| Corrosion resistance | Moderate, coating-enhanced | Low without coating; coating-dependent | Very high (passive surface) | Moderate, interface-dependent |
| Thermal conductivity (W/m·K) | 205 | 50 | 16–25 | >200 |
| Young’s modulus (GPa) | 70–80 | 190–210 | 190–210 | 80–90 |
| Tensile strength (MPa) | 100–300 | 350–600 | 500–900 | 200–300 |
| Density (g/cm3) | 2.7 | 7.85 | 7.9–8.1 | 2.8 |
| Poisson’s ratio | 0.33 | 0.30 | 0.27–0.30 | 0.25 |
| Relative surface hardness (qualitative) | Low | Medium | High | Medium-High |
| Fracture toughness (MPa·m1/2) | 20–30 | 50–70 | 80–120 | 15–25 |
| Barrier properties (O2) (cc/m2·24h) | 0.01–0.02 | 0.1–0.3 (with coating) | Negligible (passive surface) |
0.1–0.2 |
| Barrier properties (H2O) (g/m2·24h) | 0.1–0.2 | High, coating-dependent | Near-zero | 0.1–0.3 |
| Barrier (Light/UV) | Intrinsic metallic opacity |
Intrinsic metallic opacity |
Intrinsic metallic opacity |
Intrinsic metallic opacity |
| Major applications | Food, pharmaceutical, cosmetics | Food cans, caps, closures | Reusable bottles, medical, premium food | Electronics, aerospace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
