Submitted:
30 January 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Plant Materials
FTIR Analysis
Metabolite Analysis
Bioinformatics Analysis
Primer Design
Gene Expression Analysis
Results and Discussion
FTIR Spectral Analysis

Metabolite Profiling
Molecular Interaction Network Analysis

Gene Expression
Gene Expression Analysis of Genes in the Arginine Metabolic Pathway
Gene Expression Analysis of Genes in the Anthocyanin Pathway

Conclusion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yilmaz, C.; Rezaei, M.; Sarkhosh, A. Environmental requirements and site selection; CABI, 2021; pp. 225–246. [Google Scholar]
- Sarkhosh, A.; Yavari, A.M.; Zamani, Z. The pomegranate: Botany, production and uses; CAB International, 2021. [Google Scholar]
- Kalaycıoğlu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry 2017, 221, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Tabar, S.M.; Tehranifar, A.; Davarynejad, G.H.; Nemati, S.H.; Zabihi, H.R. Aril paleness, new physiological disorder in pomegranate fruit (Punica granatum): physical and chemical changes during exposure of fruit disorder. 2009. [Google Scholar]
- Kavand, M.; Arzani, K.; Barzegar, M.; Mirlatifi, M.J.J.o.A.S.; Technology. Pomegranate (Punica granatum L.) fruit quality attributes in relation to aril browning disorder. 2020, 22, 1053–1065. [Google Scholar]
- Kavand, M.; Arzani, K.; Barzegar, M.; Mirlatifi, M. Identification of the tolerant pomegranate genotypes for the aril browning or aril paleness disorder. Proceedings of the I International Conference and X National Horticultural Science Congress of Iran (IrHC2017) 2017, 1315, 609–614. [Google Scholar]
- Shivashankar, S.; Hemlata, S.; Sumathi, M.J. Aril browning in pomegranate (Punica granatum L.) is caused by the seed. Current Science 2012, 103, 26–28. [Google Scholar]
- Asadi, E.; Ghehsareh, A.M.; Moghadam, E.G.; Hodaji, M.; Zabihi, H. Improving of pomegranate aril paleness disorder through application of Fe and Zn elements. Indian Journal of Horticulture 2019, 76, 279–288. [Google Scholar] [CrossRef]
- Jahani, M.; Sayyari Zohan, M.; Moradinezhad, F.; Mirzaee, M.R.; Khayyat, M. Effectiveness of potassium spraying on mitigation of aril paleness disorder in different pomegranate cultivars. Journal of Plant Nutrition 2024, 47, 3024–3034. [Google Scholar] [CrossRef]
- Kavand, M.; Arzani, K.; Barzegar, M.; Mirlatifi, M.J.S.; Journal, P.P. Effects of sunscreen, kaolin application, fruit thinning and supplementary irrigation on the aril browning disorder of Pomegranate cv.“Malase Torshe Saveh”. 2017, 33, 85–112. [Google Scholar]
- Krueger, D.A. Composition of Pomegranate Juice. Journal of AOAC INTERNATIONAL 2019, 95, 163–168. [Google Scholar] [CrossRef]
- Zhao, J.; Qi, X.; Li, J.; Cao, Z.; Liu, X.; Yu, Q.; Xu, Y.; Qin, G. Metabolic Profiles of Pomegranate Juices during Fruit Development and the Redirection of Flavonoid Metabolism. Horticulturae 2023, 9, 881. [Google Scholar] [CrossRef]
- Qin, G.; Liu, C.; Li, J.; Qi, Y.; Gao, Z.; Zhang, X.; Yi, X.; Pan, H.; Ming, R.; Xu, Y. Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: exploring their relationship with genetic mechanisms of seed coat development. Horticulture Research 2020, 7. [Google Scholar] [CrossRef]
- Chele, K.H.; Tinte, M.M.; Piater, L.A.; Dubery, I.A.; Tugizimana, F. Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites 2021, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Li, R.; Ren, L.; Gao, X.; Zhang, Y.; Ma, Z.; Ma, D.; Luo, Y. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chemistry 2018, 260, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.; Wu, P.; Wang, Z.; Wang, Y.; Li, C.J.B.p.b. p.b. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. 2020, 20, 1–21. [Google Scholar]
- Vardin, H.; Tay, A.; Ozen, B.; Mauer, L. Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry 2008, 108, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology 2023, 41, 447–449. [Google Scholar] [CrossRef]
- KNApSAcK. KNApSAcK Database (2024). KNApSAcK Metabolite Database. 2024.
- Zhao, X.; Shen, Y.; Yan, M.; Yuan, Z. Flavonoid profiles in peels and arils of pomegranate cultivars. Journal of Food Measurement and Characterization 2022, 16, 880–890. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological) 2018, 57, 289–300. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Hawkins, C.; Xue, B.; Yasmin, F.; Wyatt, G.; Zerbe, P.; Rhee, Seung Y. Plant Metabolic Network 16: expansion of underrepresented plant groups and experimentally supported enzyme data. Nucleic Acids Research 2024, 53, D1606–D1613. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023, 51, D638–d646. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Han, R.; Yu, N.; Zhang, W.; Xing, L.; Xie, D.; Peng, D. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PloS one 2018, 13, e0196592. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A.F. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 2012, 5, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 2011, 155, 2–18. [Google Scholar] [CrossRef]
- Carrari, F.; Fernie, A.R. Metabolic regulation underlying tomato fruit development. J Exp Bot 2006, 57, 1883–1897. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Lv, J.; Pang, Q.; Chen, X.; Li, T.; Fang, J.; Lin, S.; Jia, H. Transcriptome analysis of strawberry fruit in response to exogenous arginine. Planta 2020, 252, 82. [Google Scholar] [CrossRef]
- Hilbert, G.; Soyer, J.; Gaudillere, J.; Molot, C.; Giraudon, J. MilinS, Nitrogen supply during growth of Vitis vinifera L cv Merlot: effect on must quality and anthocyanin accumulation. Vitis 2003, 42, 69–76. [Google Scholar]
- Wang, Y.; Shi, Y.; Li, K.; Yang, D.; Liu, N.; Zhang, L.; Zhao, L.; Zhang, X.; Liu, Y.; Gao, L.; et al. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Molecules 2021, 26, 6745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yuan, Z.; Feng, L.; Fang, Y. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. Journal of plant research 2015, 128, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, Y.; Zhou, T.; Sun, W.; Shan, X.; Gao, X.; Wang, L. Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. Frontiers in Plant Science 2019, 10–2019. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, B.-G.; Sung, S.; Kim, M.; Mok, H.; Chong, Y.; Ahn, J.-H. Engineering flavonoid glycosyltransferases for enhanced catalytic efficiency and extended sugar-donor selectivity. Planta 2013, 238, 683–693. [Google Scholar] [CrossRef]
- Seyed Hajizadeh, H.; Rouhpourazar, M.; Azizi, S.; Zahedi, S.M.; Okatan, V. Nanochitosan-based encapsulation of arginine and phenylalanine improves the quality and vase life of Rosa hybrida ʻMorden Fireglowʼ. Journal of Plant Growth Regulation 2024, 43, 686–700. [Google Scholar] [CrossRef]
- Ben-Simhon, Z.; Judeinstein, S.; Nadler-Hassar, T.; Trainin, T.; Bar-Ya’akov, I.; Borochov-Neori, H.; Holland, D. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development. Planta 2011, 234, 865–881. [Google Scholar] [CrossRef]
- Perkowski, M.C.; Warpeha, K.M. Phenylalanine roles in the seed-to-seedling stage: Not just an amino acid. Plant Science 2019, 289, 110223. [Google Scholar] [CrossRef]
- El-Azaz, J.; Cánovas, F.M.; Ávila, C.; de la Torre, F. The Arogenate Dehydratase ADT2 is Essential for Seed Development in Arabidopsis. Plant and Cell Physiology 2018, 59, 2409–2420. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
