Submitted:
30 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Traditional Methods of Rabbit Genetic Improvement

2.1. Quantitative Trait Loci Mapping and Its Application in Rabbits
2.2. Marker Assisted Selection (MAS) in Rabbit Breeding
2.3. Genomic Selection in Rabbit Genetic Improvement
2.4. Genome or Gene Editing (Gned) in Rabbit Genetic Improvement
Zinc-Finger Nucleases (ZFNs)
Transcription Activator-Like Effector Nucleases (TALENs)
CRISPR/Cas9 System

Multi-Omics in Rabbit Genetic Improvement
| Technology | Development Period | Key Components | Advantages | Disadvantages | Efficiency in Livestock | Applications in Livestock |
|---|---|---|---|---|---|---|
| Zinc-Finger Nucleases (ZFNs) | 1996-2003 | Zinc finger DNA-binding domain, FokI cleavage domain (18-36 bp recognition) | First-generation precision tool, smaller size aids delivery | Complex design, time-consuming, higher off-target rate | 1-5% in embryos | Limited use; proof-of-concept in model organisms |
| TALENs | 2009-2011 | TAL effector repeat arrays (33-35 aa units), FokI nuclease (30-40 bp recognition) | Straightforward design, higher specificity, longer recognition sites | Large size (challenging delivery), labor-intensive assembly | 5-15% in embryos | Early applications in pig and cattle; limited rabbit studies |
| CRISPR-Cas9 | 2012-2013 | Guide RNA (sgRNA), Cas9 protein, PAM sequence (20 bp guide + 3 bp PAM) | Simple design, rapid implementation, allows multiplexing, cost-effective | PAM sequence requirement limits targets, potential off-target effects | 20-80% in embryos | Heat tolerance (cattle), polled cattle, disease resistance, myostatin editing |
| Base Editors | 2016-2017 | Catalytically dead Cas9, cytidine or adenine deaminase, guide RNA | Precise single nucleotide changes (C→T or A→G), no DSB, reduced indels | Limited to specific base transitions, narrow editing window | 10-60% in embryos | Emerging in livestock; SNP correction, disease resistance alleles |
| Prime Editing | 2019 | Cas9 nickase (H840A), reverse transcriptase, pegRNA template | Versatile (insertions, deletions, all base changes), high precision, no DSB | Lower efficiency, complex pegRNA design, larger construct size | 5-40% in embryos | Proof-of-concept in mice and livestock cells; not widely applied |
Application of Machine Learning in Rabbit’s Genetic Improvement

Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| The following abbreviations are used in this manuscript | . |
| DNA | Deoxyribonucleic acid |
| ML | Machine Learning |
| GS | Genomic selection |
| SNP TALEN |
Single Nucleotide Polymorphism Transcription Activator-Like Endonucleases |
References
- Allain, D.; Bonnet, M.; Gilbert, H.; Ruesche, J. Genetic resistance to rabbit diseases: A review. World Rabbit Sci. 2015, 23, 123–137. [Google Scholar]
- Bishop, T.F.; Van Eenennaam, A.L. Genome editing approaches to livestock improvement. Nat. Rev. Genet. 2020, 21, 655–668. [Google Scholar]
- Carlson, D.F.; Lancto, C.A.; Zang, B.; Kim, E.S.; Walton, M.; Oldeschulte, D.; et al. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 2016, 34, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.; Rubin, C.J.; Di Palma, F.; Albert, F.W.; Alföldi, J.; Martinez Barrio, A.; et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 2014, 345, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Cenariu, M.; Pall, E.; Cenariu, D. Embryo biopsy and preimplantation genetic diagnosis. J. Assist. Reprod. Genet. 2012, 29, 919–927. [Google Scholar]
- Chafai, M.; Moula, N.; Antoine-Moussiaux, N.; Farnir, F. Sustainable rabbit production systems under climate change. Animals 2023, 13, 251. [Google Scholar] [CrossRef]
- Clark, S.J.; Van der Werf, J.; Kinghorn, B. Breeding and genetics of livestock sustainability. Anim. Prod. Sci. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Eggen, A. The development and application of genomic selection as a new breeding paradigm. Anim. Front. 2012, 2, 10–15. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Drivers and Triggers for Transformation; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Fontanesi, L.; Schiavo, G.; Galimberti, G.; Calò, D.G.; Scotti, E.; Martelli, P.L.; et al. A genome-wide association study for rabbit growth traits. J. Anim. Breed. Genet. 2015, 132, 195–204. [Google Scholar] [CrossRef]
- Fontanesi, L.; Bertolini, F.; Dall’Olio, S.; Russo, V. Multi-omics approaches in livestock genetics. Brief. Funct. Genomics 2018, 17, 421–432. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Gamazon, E.R.; Wheeler, H.E.; Shah, K.P.; Mozaffari, S.V.; Aquino-Michaels, K.; Carroll, R.J.; et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 2015, 47, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- García, M.L.; Baselga, M.; Piles, M. Genetic parameters and genomic regions for litter size in rabbits. Anim. Genet. 2017, 48, 273–280. [Google Scholar] [CrossRef]
- Georges, M.; Charlier, C.; Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019, 20, 135–156. [Google Scholar] [CrossRef]
- Goddard, M.E.; Hayes, B.J.; Meuwissen, T.H. Genomic selection in livestock populations. Genet. Res. 2010, 92, 413–421. [Google Scholar] [CrossRef]
- Hustedt, N.; Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 2017, 19, 1–9. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Peters, S.O.; Akwanji, K.A.; Imumorin, I.G.; Zhao, X. High-density genome-wide genotyping in livestock. Front. Genet. 2019, 10, 121. [Google Scholar] [CrossRef]
- Kramer, B.; Meijboom, F.L.B. Ethical issues in farm animal breeding. J. Agric. Environ. Ethics 2022, 35, 1–20. [Google Scholar]
- Kwon, S.G.; Lee, S.H.; Kim, T.W. Genomic tools and marker-assisted selection in livestock. Genes 2024, 15, 44. [Google Scholar] [CrossRef]
- Lillico, S.G.; Proudfoot, C.; Carlson, D.F.; Stverakova, D.; Neil, C.; Blain, C.; et al. Mammalian genome engineering using CRISPR systems. Transgenic Res. 2016, 25, 509–524. [Google Scholar]
- Ma, T.; Tao, J.; Yang, M.; He, C.; Tian, X.; Zhang, X.; et al. Sheep production of melatonin proteins via CRISPR/Cas9. Sci. Rep. 2017, 7, 12259. [Google Scholar]
- Menchaca, A.; Dos Santos-Neto, P.C.; Cuadro, F. CRISPR in livestock reproduction. Reprod. Fertil. Dev. 2020, 32, 202–215. [Google Scholar]
- Middelveld, R.; Macnaghten, P. Gene editing and livestock futures. Sci. Technol. Hum. Values 2021, 46, 693–720. [Google Scholar]
- Oliveira, H.R.; Brito, L.F.; Lourenco, D.A.L.; Silva, F.F.; Jamrozik, J.; Schenkel, F.S. Traditional and genomic breeding strategies. J. Anim. Sci. 2023, 101, skac403. [Google Scholar] [CrossRef]
- Park, K.E.; Park, C.H. Precision genome editing in livestock. BMB Rep. 2017, 50, 516–523. [Google Scholar]
- Piles, M.; Tusell, L.; Sánchez, J.P. Genomic selection in rabbits. J. Anim. Breed. Genet. 2017, 134, 485–497. [Google Scholar] [CrossRef]
- Piles, M.; García, M.L.; Tusell, L. Genomic tools for improving rabbit robustness. Animals 2021, 11, 713. [Google Scholar] [CrossRef]
- Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J.; et al. Genome edited pigs lacking myostatin. Sci. Rep. 2015, 5, 14337. [Google Scholar] [CrossRef]
- Rosell, J.M.; de la Fuente, L.F.; Parra, J.L. Disease resistance genetics in rabbits. World Rabbit Sci. 2019, 27, 189–203. [Google Scholar]
- Satué, K.; Tusell, L.; Piles, M. Genomic prediction of litter size in rabbits. Genet. Sel. Evol. 2019, 51, 66. [Google Scholar]
- Schultz-Bergin, M. Ethical issues in genome editing of animals. Philos. Technol. 2018, 31, 513–533. [Google Scholar]
- Stock, J.; Reents, R.; Simianer, H. Livestock breeding in the genomic era. Anim. Front. 2020, 10, 10–17. [Google Scholar] [CrossRef]
- Suravajhala, P.; Kogelman, L.J.A.; Kadarmideen, H.N. Multi-omics data integration in livestock. Brief. Bioinform. 2016, 17, 520–537. [Google Scholar] [CrossRef]
- Tan, W.; Proudfoot, C.; Lillico, S.G.; Whitelaw, C.B.A. Gene targeting in livestock. Trends Biotechnol. 2016, 34, 781–790. [Google Scholar] [CrossRef]
- Tanihara, F.; Hirata, M.; Otoi, T.; Yamanaka, K. Genome editing by electroporation in livestock embryos. Sci. Rep. 2018, 8, 493. [Google Scholar]
- Tusell, L.; García, M.L.; Piles, M. Genomic prediction in rabbit breeding programs. Animal 2019, 13, 2461–2468. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L. Gene editing of livestock. Annu. Rev. Anim. Biosci. 2019, 7, 403–427. [Google Scholar]
- Velasco-Galilea, M.; Sánchez, J.P.; Piles, M. Genomic evaluation of growth traits in rabbits. Anim. Genet. 2021, 52, 471–482. [Google Scholar] [CrossRef]
- Wei, J.; Wagner, S.; Luttermann, C. Precise genome editing using ssODNs. Nucleic Acids Res. 2018, 46, 3736–3745. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Gong, H.; Cui, L.; Zhang, W.; Ma, J.; et al. Genome-wide association study for growth traits in rabbits. BMC Genet. 2019, 20, 40. [Google Scholar]
| Method | Time Period | Key Technologies | Advantages | Limitations | Prediction Accuracy | Generation Interval | Cost | Best Application |
|---|---|---|---|---|---|---|---|---|
| Traditional Selection | Pre-1990s | Phenotypic selection, pedigree analysis, progeny testing | Simple implementation, low cost, no specialized equipment | Long generation intervals, limited accuracy for low heritability traits | 0.20-0.40 | 6-12 months | Low | Highly heritable traits (growth rate) |
| QTL Mapping | 1990s-2000s | Microsatellite markers, linkage analysis | Identifies chromosomal regions, provides biological insights | Population-specific, limited genome coverage, labor-intensive | 0.25-0.45 | 6-12 months | Moderate | Candidate genes, monogenic traits |
| Marker-Assisted Selection | 2000s-2010s | SNP markers, candidate genes, GWAS | Early selection, useful for sex-limited traits, reduces phenotyping costs | Limited to major-effect loci, population-specific markers | 0.30-0.50 | 3-6 months | Moderate | Sex-limited traits, carcass quality, disease resistance |
| Genomic Selection | 2010s-present | High-density SNP arrays (150K-600K), GBLUP, ssGBLUP | Genome-wide effects, high accuracy, enables early selection | Requires large reference populations (>1000), expensive genotyping | 0.45-0.68 | 3-6 months | High | All polygenic traits, routine breeding programs |
| Gene Editing | 2015-present | CRISPR-Cas9, TALENs, ZFNs | Precise targeted changes, single generation modifications | Regulatory challenges, high costs, off-target risks, ethical concerns | N/A | Single gen. | Very High | Disease resistance, productivity genes, functional genomics |
| Machine Learning/AI | 2020-present | Random forests, neural networks, deep learning | Captures non-linear effects, handles complex interactions | Requires large datasets, ‘black box’ problem, computationally intensive | 0.50-0.70+ | 3-6 months | High | Complex traits with non-additive effects, GxE interactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).