Submitted:
29 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- provides a control-friendly model for a PEHH wheel loader powertrain.
- formulates the nonlinear model predictive control problem which defines the energy management strategy by minimizing the energy usage and battery health degradation.
- evaluates the results of the NMPC EMS compared to a rule-based baseline EMS with realistic drive cycles from a digital-twin wheel loader model that captures accurate soil-tool interaction forces.
- validates the NMPC results for real-time operation through hardware-in-the-loop (HiL) simulation.
2. System Modeling
- Electric motor: A permanent magnet synchronous motor (PMSM) which has a wide torque-speed range and high power density [24].
- Battery: A lithium iron phosphate (LiFeP, LFP) battery that provides electrical energy to the motor and auxiliary components, including the hydraulic actuators that power the movement of the bucket. This chemistry is chosen for its slow aging and low risk of thermal runaway [25].
- Hydraulic pump/motor: A variable displacement pump/motor that operates in either pumping or motoring mode at various volumetric displacements.
- Accumulator: hydraulic accumulator which stores energy to power the hydraulic pump/motor.
2.1. High-Order Model for PEHH Powertrain
2.1.1. Vehicle Model
2.1.2. Electric Motor Model
2.1.3. Battery Model
2.1.4. Hydraulic Pump/Motor Model
2.1.5. Hydraulic Accumulator Model
2.2. Control-Oriented Model
2.2.1. Electric Subsystem Model
2.2.2. Hydraulic Subsystem Model
2.2.3. Model Validation
3. Energy Management
3.1. Rule-Based Control
3.2. Nonlinear Model Predictive Control
4. Results
5. Conclusions
Author Contributions
Funding
References
- Beltrami, D.; Iora, P.; Tribioli, L.; Uberti, S. Electrification of compact off-highway vehicles—Overview of the current state of the art and trends. Energies 2021, 14, 5565. [Google Scholar] [CrossRef]
- Newsom, G. Exec. Order No. N-79-20, 2020.
- Huang, X.; Yan, W.; Cao, H.; Chen, S.; Tao, G.; Zhang, J. Prospects for purely electric construction machinery: Mechanical components, control strategies and typical machines. Automation in Construction 2024, 164, 105477. [Google Scholar] [CrossRef]
- Niu, G.; Shang, F.; Krishnamurthy, M.; Garcia, J.M. Design and analysis of an electric hydraulic hybrid powertrain in electric vehicles. IEEE Transactions on Transportation Electrification 2016, 3, 48–57. [Google Scholar] [CrossRef]
- Taaghi, A.; Yoon, Y. Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle. Technical report, SAE Technical Paper 2024-01-2154, 2024.
- Zhang, H.; Wang, F.; Xu, B.; Fiebig, W. Extending battery lifetime for electric wheel loaders with electric-hydraulic hybrid powertrain. Energy 2022, 261, 125190. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Q.; Wen, Q.; Xu, B. Improving productivity of a battery powered electric wheel loader with electric-hydraulic hybrid drive solution. Journal of Cleaner Production 2024, 440, 140776. [Google Scholar] [CrossRef]
- Xu, N.; Kong, Y.; Chu, L.; Ju, H.; Yang, Z.; Xu, Z.; Xu, Z. Towards a smarter energy management system for hybrid vehicles: A comprehensive review of control strategies. Applied sciences 2019, 9, 2026. [Google Scholar] [CrossRef]
- Panday, A.; Bansal, H.O. A review of optimal energy management strategies for hybrid electric vehicle. International Journal of Vehicular Technology 2014, 2014, 160510. [Google Scholar] [CrossRef]
- Hofman, T.; Steinbuch, M.; Van Druten, R.; Serrarens, A. Rule-based energy management strategies for hybrid vehicle drivetrains: A fundamental approach in reducing computation time. IFAC Proceedings Volumes 2006, 39, 740–745. [Google Scholar] [CrossRef]
- Nazari, S.; Siegel, J.; Stefanopoulou, A. Optimal energy management for a mild hybrid vehicle with electric and hybrid engine boosting systems. IEEE Transactions on Vehicular Technology 2019, 68, 3386–3399. [Google Scholar] [CrossRef]
- Pam, A.; Bouscayrol, A.; Fiani, P.; Noth, F. Rule-based energy management strategy for a parallel hybrid electric vehicle deduced from dynamic programming. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2017; pp. 1–6.
- Nazari, S.; Middleton, R.; Siegel, J.; Stefanopoulou, A. Equivalent consumption minimization strategy for a power split supercharger. Technical report, SAE Technical Paper. 2019. [Google Scholar]
- Nazari, S.; Siegel, J.; Middleton, R.; Stefanopoulou, A. Power split supercharging: A mild hybrid approach to boost fuel economy. Energies 2020, 13, 6580. [Google Scholar] [CrossRef]
- Deppen, T.O.; Alleyne, A.G.; Stelson, K.; Meyer, J. A model predictive control approach for a parallel hydraulic hybrid powertrain. In Proceedings of the Proceedings of the 2011 American Control Conference. IEEE, 2011; pp. 2713–2718. [Google Scholar]
- Vu, T.V.; Chen, C.K.; Hung, C.W. A model predictive control approach for fuel economy improvement of a series hydraulic hybrid vehicle. Energies 2014, 7, 7017–7040. [Google Scholar] [CrossRef]
- Curiel-Olivares, G.; Escobar, G.; Johnson, S.; Schacht-Rodríguez, R. MPC-based EMS for a series hybrid electric tractor. IEEE Access 2024, 12, 135999–136010. [Google Scholar] [CrossRef]
- Serpi, A.; Porru, M. An MPC-based energy management system for a hybrid electric vehicle. In Proceedings of the 2020 IEEE vehicle power and propulsion conference (VPPC). IEEE; 2020; pp. 1–6. [Google Scholar]
- Wang, Z.; Jiao, X. Hierarchical model predictive control for hydraulic hybrid powertrain of a construction vehicle. Applied Sciences 2020, 10, 745. [Google Scholar] [CrossRef]
- Borhan, H.; Vahidi, A.; Phillips, A.M.; Kuang, M.L.; Kolmanovsky, I.V.; Di Cairano, S. MPC-based energy management of a power-split hybrid electric vehicle. IEEE Transactions on Control Systems Technology 2011, 20, 593–603. [Google Scholar] [CrossRef]
- Gao, R.; Zhou, G.; Wang, Q. Real-time three-level energy management strategy for series hybrid wheel loaders based on WG-MPC. Energy 2024, 295, 131011. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Wu, J.; Xu, B.; Geimer, M. A Cycle-Adaptive Control Strategy to Minimize Electricity and Battery Aging Costs of Electric-Hydraulic Hybrid Wheel Loaders. Energy 2025, 134655. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Hong, J.; Zhang, H.; Yang, J. Energy management strategy of a novel parallel electric-hydraulic hybrid electric vehicle based on deep reinforcement learning and entropy evaluation. Journal of Cleaner Production 2023, 403, 136800. [Google Scholar] [CrossRef]
- Hasnain, A.; Gamwari, A.S.; Resalayyan, R.; Sadabadi, K.F.; Khaligh, A. Medium and heavy duty vehicle electrification: Trends and technologies. IEEE Transactions on Transportation Electrification, 2024. [Google Scholar]
- Camargos, P.H.; dos Santos, P.H.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: a review of state of the art. International Journal of Energy Research 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Karanfil, D. Developing Scalable Digital Twins of Construction Vehicles. PhD thesis, University of California, Davis, 2025. [Google Scholar]
- Algoryx. AGX Dynamics. 19 05 2025. Accessed: 2025-05-19. Available online: https://www.algoryx.se/agx-dynamics/.
- Karanfil, D.; Lindmark, D.; Servin, M.; Torick, D.; Ravani, B. Developing a calibrated physics-based digital twin for construction vehicles. arXiv preprint 2025, arXiv:2508.08576. [Google Scholar] [CrossRef]
- Abdolmohammadi, A.; Mojahed, N.; Nazari, S.; Ravani, B. Data-Efficient Excavation Force Estimation for Wheel Loaders. IEEE Access 2025, 13, 181846–181862. [Google Scholar] [CrossRef]
- Staunton, R.H.; Ayers, C.W.; Marlino, L.; Chiasson, J.; Burress, B. Evaluation of 2004 Toyota Prius hybrid electric drive system. Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2006.
- Stipetic, S.; Zarko, D.; Popescu, M. Ultra-fast axial and radial scaling of synchronous permanent magnet machines. IET Electric Power Applications 2016, 10, 658–666. [Google Scholar] [CrossRef]
- Schauer, E.; Moskalik, A.; Kargul, J.; Stuhldreher, M.; Butters, K.; Barba, D.; Drallmeier, J.; Gross, M. Development of Benchmarking Methods for Electric Vehicle Drive Units. Technical report, SAE Technical Paper; 2024. [Google Scholar]
- Haas, M.; Nemati, A.; Moura, S.; Nazari, S. LiFePO4 Battery Thermal Modeling: Bus Bar Thermal Effects. IFAC-PapersOnLine 2024, 58, 887–892. [Google Scholar] [CrossRef]
- Hu, X.; Perez, H.E.; Moura, S.J. Battery charge control with an electro-thermal-aging coupling. Proceedings of the Dynamic Systems and Control Conference. American Society of Mechanical Engineers 2015, Vol. 57243, V001T13A002. [Google Scholar]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. Journal of power sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Haas, M.; Abdolmohammadi, A.; Nazari, S. Combined control and design optimization of a parallel electric-hydraulic hybrid wheel loader to prolong battery lifetime. Authorea Preprints, 2025. [Google Scholar]
- Parker Hannifin Corporation. PAVC Medium Pressure Super Charged Piston Pumps. 2018. Available online: https://www.parker.com/content/dam/Parker-com/Literature/Hydraulic-Pump-Division/PAVC-Files/PAVC-Pump-Catalog—HY28-2662-CD-US.pdf.
- Huang, J.; Cheng, X.; Shen, Y.; Kong, D.; Wang, J. Deep learning-based prediction of throttle value and state for wheel loaders. Energies 2021, 14, 7202. [Google Scholar] [CrossRef]
- Zauner, M.; Altenberger, F.; Knapp, H.; Kozek, M. Phase independent finding and classification of wheel-loader work-cycles. Automation in construction 2020, 109, 102962. [Google Scholar] [CrossRef]














| Coefficient | ||||||
|---|---|---|---|---|---|---|
| Value | 6.21E-3 | 7.65E-9 | -3.36E-6 | -1.52E-2 | 9.07E-4 | 3.87E-4 |
| Coefficient | ||||||||
|---|---|---|---|---|---|---|---|---|
| Value | -0.290 | 3.42E-2 | 5.47E-9 | -8.96E-10 | 3.52E-3 | 738E-4 | -1.79E-9 | -6.44E-11 |
| Variable | Description | Value | Units |
|---|---|---|---|
| Vehicle Model | |||
| Base Vehicle Mass | 3356 | kg | |
| Wheel Radius | 0.4 | m | |
| Final Drive Ratio | 30.39 | - | |
| Rolling Resistance Coefficient | 0.06 | - | |
| Traction Efficiency | 0.94 | - | |
| Electric Subsystem | |||
| Motor Time Constant | 50 | ms | |
| Battery Cells in Parallel | 3 | - | |
| Battery Cells in Series | 61 | - | |
| Battery Cell Capacity | 25 | Ah | |
| Battery Internal Resistance | 7.81E-3 | ||
| Battery RC Resistance | 6.19E-3 | ||
| Battery RC Capacitance | 7.84E3 | F | |
| Hydraulic Subsystem | |||
| Pump/Motor Volumetric Displacement | 131.44 | cc/rev | |
| Accumulator Volume | 100 | L | |
| Maximum Accumulator Pressure | 35 | MPa | |
| Minimum Accumulator Pressure | 15 | MPa | |
| Pre-Charge Pressure | 15 | MPa | |
| Nominal Accumulator SOP | 0.75 | - | |
| Parameter | |||||
|---|---|---|---|---|---|
| Value | 0.85 | 0.65 | 0.5 | 100 | 50 |
| Units | - | - | m/s | Nm | Nm |
| Component | Specifications |
|---|---|
| dSPACE SCALEXIO AutoBox DS6001 | i7-6820EQ |
| PC Interface | i9-14900F |
| Error Level | 0% | 5% | 10% | 15% | 20% |
|---|---|---|---|---|---|
| Min time [ms] | 0.371 | 0.371 | 0.372 | 0.371 | 0.371 |
| Max time [ms] | 27.58 | 41.12 | 27.67 | 80.12 | 77.66 |
| Avg time [ms] | 2.014 | 1.836 | 1.747 | 1.684 | 1.707 |
| Std time [ms] | 2.496 | 2.612 | 2.517 | 2.981 | 2.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
