Submitted:
27 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Structure-Based Drug Design
2.1. Target Preparation
2.2. Binding Site Prediction
2.3. Virtual Screening
2.4. Molecular Docking and Scoring Functions
2.5. Molecular Dynamics Simulation
3. Ligand-Based Drug Design
3.1. Similarity Searches
3.2. Pharmacophore Modeling
3.3. Quantitative Structure-Activity Relationship
4. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Properties
5. Network Pharmacology
6. Structure Framework of Computational Drug Discovery
7. Critical Challenges
8. Conclusion and Perspectives
Ethics Approval and Consent to Participate
Consent for Publication
Conflicts of Interests
Funding
Data Availability Statement
Acknowledgments
References
- Segall, M.D.; Barber, C. Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov. Today 2014, 19, 688–693. [Google Scholar] [CrossRef]
- Zemnou, C.T. In silico Comparative Study of the Anti-Cancer Potential of Inhibitors of Glucose-6-Phosphate Dehydrogenase Enzyme Using ADMET Analysis, Molecular Docking, and Molecular Dynamic Simulation. Adv. Theory Simulations 2025, 8, 2400757. [Google Scholar] [CrossRef]
- Bosch, F.; Rosich, L. The Contributions of Paul Ehrlich to Pharmacology: A Tribute on the Occasion of the Centenary of His Nobel Prize. Pharmacology 2008, 82, 171–179. [Google Scholar] [CrossRef]
- Craig, J.; Duncan, I.; Hockley, D.; Grief, C.; Roberts, N.; Mills, J. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antivir. Res. 1991, 16, 295–305. [Google Scholar] [CrossRef]
- Jorgensen, W.L. The Many Roles of Computation in Drug Discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.E.; Baker, C.T.; Dwyer, M.D.; Murcko, M.A.; Rao, B.G.; Tung, R.D.; Navia, M.A. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc. 1995, 117, 1181–1182. [Google Scholar] [CrossRef]
- Niu, W.-H.; Wu, F.; Cao, W.-Y.; Wu, Z.-G.; Chao, Y.-C.; Peng, F.; Liang, C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci. Rep. 2021, 41, BSR20202583. [Google Scholar] [CrossRef]
- Zemnou, C.T. Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Revealed the Molecular Targets and Potential Mechanism of Nauclea Latifolia in the Treatment of Breast Cancer. Chem. Biodivers. 2024, 22, e202402423. [Google Scholar] [CrossRef] [PubMed]
- Rognan, D. Structure-Based Approaches to Target Fishing and Ligand Profiling. Mol. Informatics 2010, 29, 176–187. [Google Scholar] [CrossRef]
- Batool, M.; Ahmad, B.; Choi, S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019, 20, 2783. [Google Scholar] [CrossRef]
- Ren, J.-X.; Li, L.-L.; Zheng, R.-L.; Xie, H.-Z.; Cao, Z.-X.; Feng, S.; Pan, Y.-L.; Chen, X.; Wei, Y.-Q.; Yang, S.-Y. Discovery of Novel Pim-1 Kinase Inhibitors by a Hierarchical Multistage Virtual Screening Approach Based on SVM Model, Pharmacophore, and Molecular Docking. J. Chem. Inf. Model. 2011, 51, 1364–1375. [Google Scholar] [CrossRef]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. BioMed Res. Int. 2021, 2021, 8853056. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, K.; Li, L.; Chen, L. Structure-Based Drug Design Strategies and Challenges. Curr. Top. Med. Chem. 2018, 18, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Eswar, N.; Eramian, D.; Webb, B.; Shen, M.-Y.; Sali, A. Protein Structure Modeling with MODELLER. In Structural Proteomics: High-Throughput Methods; Kobe, B., Guss, M., Huber, d.T., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 145–159. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, J.; Roy, A.; Zhang, Y. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins: Struct. Funct. Bioinform. 2011, 79, 147–160. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015, 43, W174–W181. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinform. 2009, 77 (Suppl. S9), 114–122. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals 2023, 16, 253. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Chen, Y.-P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today 2011, 16, 831–839. [Google Scholar] [CrossRef]
- Bentham Science Publisher. Methods for the Prediction of Protein-Ligand Binding Sites for Structure-Based Drug Design and Virtual Ligand Screening. Curr. Protein Pept. Sci. 2006, 7, 395–406. [Google Scholar] [CrossRef]
- Chen, K.; Mizianty, M.J.; Gao, J.; Kurgan, L. A Critical Comparative Assessment of Predictions of Protein-Binding Sites for Biologically Relevant Organic Compounds. Structure 2011, 19, 613–621. [Google Scholar] [CrossRef]
- Laurie, A.T.R.; Jackson, R.M. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005, 21, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Grimm, M.; Dai, W.-T.; Hou, M.-C.; Xiao, Z.-X.; Cao, Y. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, W.; Bell, E.W.; Yin, M.; Zhang, Y. EDock: blind protein–ligand docking by replica-exchange monte carlo simulation. J. Chemin- 2020, 12, 37. [Google Scholar] [CrossRef]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef]
- Kalidas, Y.; Chandra, N. PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol. 2008, 161, 31–42. [Google Scholar] [CrossRef]
- Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010, 38, W582–W589. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Shiwang, L.; Li, W.; Liu, S.; Xu, J. RaptorX-Property: A Web Server for Protein Structure Property Prediction. Nucleic Acids Res. 2016, 44, W430–W435. [Google Scholar] [CrossRef]
- Yang, J.; Roy, A.; Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 2013, 29, 2588–2595. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Y.; Tanaka, I.; Yao, M. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 2009, 26, 46–52. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef]
- Halgren, T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Wass, M.N.; Kelley, L.A.; Sternberg, M.J.E. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010, 38, W469–W473. [Google Scholar] [CrossRef]
- Kalidas, Y.; Chandra, N. PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol. 2008, 161, 31–42. [Google Scholar] [CrossRef]
- Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 2013, 20, 2839–2860. [Google Scholar] [CrossRef]
- Phatak, S.S.; Stephan, C.C.; Cavasotto, C.N. High-throughput andin silicoscreenings in drug discovery. Expert Opin. Drug Discov. 2009, 4, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, A.; Mazzolari, A.; Gervasoni, S.; Vistoli, G. Rescoring and Linearly Combining: A Highly Effective Consensus Strategy for Virtual Screening Campaigns. Int. J. Mol. Sci. 2019, 20, 2060. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Zou, X. Advances and Challenges in Protein-Ligand Docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [Google Scholar] [CrossRef] [PubMed]
- Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins: Struct. Funct. Bioinform. 1992, 13, 206–222. [Google Scholar] [CrossRef]
- Oshiro, C.M.; Kuntz, I.D.; Dixon, J.S. Flexible ligand docking using a genetic algorithm. J. Comput. Mol. Des. 1995, 9, 113–130. [Google Scholar] [CrossRef]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method using an Incremental Construction Algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef]
- Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein–ligand docking: Current status and future challenges. Proteins: Struct. Funct. Bioinform. 2006, 65, 15–26. [Google Scholar] [CrossRef]
- Li, J.; Fu, A.; Zhang, L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdiscip. Sci. Comput. Life Sci. 2019, 11, 320–328. [Google Scholar] [CrossRef]
- Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. arXiv 2023, arXiv:2210.01776. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wang, S.; Tang, X. EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method. Drug Discov. Ther. 2023, 17, 363–364. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: molecular docking with deep learning. J. Chemin- 2021, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2015, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Desai, P.V.; Patny, A.; Sabnis, Y.; Tekwani, B.; Gut, J.; Rosenthal, P.; Srivastava, A.; Avery, M. Identification of Novel Parasitic Cysteine Protease Inhibitors Using Virtual Screening. 1. The ChemBridge Database. J. Med. Chem. 2004, 47, 6609–6615. [Google Scholar] [CrossRef] [PubMed]
- Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2015, 44, D1045–D1053. [Google Scholar] [CrossRef]
- Vasilevich, N.I.; Aksenova, E.A.; Kazyulkin, D.N.; Afanasyev, I.I. General Ser/Thr Kinases Pharmacophore Approach for Selective Kinase Inhibitors Search as Exemplified by Design of Potent and Selective Aurora A Inhibitors. Chem. Biol. Drug Des. 2016, 88, 54–65. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Joy, S.; Nair, P.S.; Hariharan, R.; Pillai, M.R. Detailed Comparison of the Protein-Ligand Docking Efficiencies of GOLD, a Commercial Package and ArgusLab, a Licensable Freeware. Silico Biol. 2006, 6, 601–605. [Google Scholar] [CrossRef]
- Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269–288. [Google Scholar] [CrossRef]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 1. Development and Validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435–449. [Google Scholar] [CrossRef]
- Zhao, Y.; Sanner, M.F. FLIPDock: Docking flexible ligands into flexible receptors. Proteins: Struct. Funct. Bioinform. 2007, 68, 726–737. [Google Scholar] [CrossRef]
- Venkatachalam, C.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 2003, 21, 289–307. [Google Scholar] [CrossRef]
- Cheng, T.M.; Blundell, T.L.; Fernandez-Recio, J. pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins: Struct. Funct. Bioinform. 2007, 68, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Xia, B.; A Porter, K.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.-H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771–1773. [Google Scholar] [CrossRef] [PubMed]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef]
- Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins: Struct. Funct. Bioinform. 1999, 37, 228–241. [Google Scholar] [CrossRef]
- Studio: Discovery studio - Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=Discovery%20Studio%2C%20Accelrys%20%5B2.1%5D&author=D.%20Studio&publication_year=2008 (accessed on 23 October 2025).
- Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des. 2007, 21, 281–306. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins: Struct. Funct. Bioinform. 2004, 55, 288–304. [Google Scholar] [CrossRef]
- Karim, M.; Islam, M. N.; Azad Jewel, G. M. N. Silico identification of potential drug targets by subtractive genome analysis of Enterococcus faecium DO, Feb. 15; Bioinformatics, 2020. [Google Scholar] [CrossRef]
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585–590. [Google Scholar] [CrossRef]
- Nair, P.C.; Malde, A.K.; Drinkwater, N.; Mark, A.E. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design. ACS Med. Chem. Lett. 2012, 3, 322–326. [Google Scholar] [CrossRef]
- Christen, M.; Hünenberger, P.H.; Bakowies, D.; Baron, R.; Bürgi, R.; Geerke, D.P.; Heinz, T.N.; Kastenholz, M.A.; Kräutler, V.; Oostenbrink, C.; et al. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 2005, 26, 1719–1751. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41. [Google Scholar] [CrossRef]
- Turner: XMGRACE, Version 5.1. 19 - Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=XMGRACE%2C%20Version%205.1.%2019&author=P.%20Turner&publication_year=2005 (accessed on 16 October 2025).
- Rastelli, G.; Del Rio, A.; Degliesposti, G.; Sgobba, M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 2010, 31, 797–810. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Chen, Y. GPU accelerated molecular dynamics simulation of thermal conductivities. J. Comput. Phys. 2007, 221, 799–804. [Google Scholar] [CrossRef]
- Walker, R.C.; Crowley, M.F.; Case, D.A. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 2007, 29, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé, L.V.; Skeel, R.D.; Schulten, K. NAMD: a Parallel, Object-Oriented Molecular Dynamics Program. Int. J. Supercomput. Appl. High Perform. Comput. 1996, 10, 251–268. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; Van Der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Tepap, C.Z.; Anissi, J.; Bounou, S.; Zanchi, F.B. In Silico Approach for Assessment of the Anti-Tumor Potential of Cannabinoid Compounds by Targeting Glucose-6-Phosphate Dehydrogenase Enzyme. Chem. Biodivers. 2024, 21, e202401338. [Google Scholar] [CrossRef]
- Zemnou, C.T.; Karim, E.M.; Chtita, S.; Zanchi, F.B. Impact of mutations on KAT6A enzyme and inhibitory potential of compounds from Withania somnifera using computational approaches. Comput. Biol. Med. 2025, 190, 110041. [Google Scholar] [CrossRef]
- Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002, 45, 4350–4358. [Google Scholar] [CrossRef]
- Prathipati, P.; Dixit, A.; Saxena, A.K. Computer-Aided Drug Design: Integration of Structure-Based and Ligand-Based Approaches in Drug Design. Curr. Comput. Aided-Drug Des. 2007, 3, 133–148. [Google Scholar] [CrossRef]
- Prada-Gracia, D.; Huerta-Yépez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Boletin Medico Del Hosp. Infant. De Mex. 2016, 73, 411–423. [Google Scholar] [CrossRef]
- Prathipati, P.; Dixit, A.; Saxena, A.K. Computer-Aided Drug Design: Integration of Structure-Based and Ligand-Based Approaches in Drug Design. Curr. Comput. Aided-Drug Des. 2007, 3, 133–148. [Google Scholar] [CrossRef]
- Bender, A.; Jenkins, J.L.; Scheiber, J.; Sukuru, S.C.K.; Glick, M.; Davies, J.W. How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. J. Chem. Inf. Model. 2009, 49, 108–119. [Google Scholar] [CrossRef]
- Johnson, M. A.; Maggiora, G. M.; A. C., S. Meeting, Concepts and applications of molecular similarity. Wiley, 1990. Available online: https://cir.nii.ac.jp/crid/1970304959821169570 (accessed on 16 October 2025).
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, C.G.; Ganellin, C.R.; Lindberg, P.; Mitscher, L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. 1998, 70, 1129–1143. [Google Scholar] [CrossRef]
- Van Drie, J.H. Generation of three-dimensional pharmacophore models. WIREs Comput. Mol. Sci. 2013, 3, 449–464. [Google Scholar] [CrossRef]
- Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A Novel Approach to Pharmacophore Modeling and 3D Database Searching. Chem. Biol. Drug Des. 2006, 67, 370–372. [Google Scholar] [CrossRef] [PubMed]
- F. Güner, Pharmacophore Perception, Development, and Use in Drug Design. In Internat’l University Line; 2000.
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2004, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Rakers, C. “Dynophores: Novel Dynamic Pharmacophores-Implementation of Pharmacophore Generation Based on Molecular Dynamics Trajectories and Their Graphical Representation”. Available online: https://www.semanticscholar.org/paper/Dynophores:-Novel-Dynamic-of-Pharmacophore-Based-on-Rakers/a7fec7f5d233ec81274b2b4c77c6d2d57e461083 (accessed on 16 October 2025).
- Mendenhall, J.; Meiler, J. Improving quantitative structure–activity relationship models using Artificial Neural Networks trained with dropout. J. Comput. Mol. Des. 2016, 30, 177–189. [Google Scholar] [CrossRef]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. [Google Scholar] [CrossRef] [PubMed]
- Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem. 1994, 37, 4130–4146. [Google Scholar] [CrossRef]
- Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J. Med. Chem. 2013, 57, 4977–5010. [Google Scholar] [CrossRef]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational Methods in Drug Discovery. Pharmacol. Rev. 2013, 66, 334–395. [Google Scholar] [CrossRef]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef] [PubMed]
- Pai, P.; Kumar, A.; Shetty, M.G.; Kini, S.G.; Krishna, M.B.; Satyamoorthy, K.; Babitha, K.S. Identification of potent HDAC 2 inhibitors using E-pharmacophore modelling, structure-based virtual screening and molecular dynamic simulation. J. Mol. Model. 2022, 28, 119. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Hou, Z.; Zhang, Z. Pharmacophore and QSAR Studies to Design Novel Histone Deacetylase 2 Inhibitors. Chem. Biol. Drug Des. 2012, 79, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J. ADMET—turning chemicals into drugs. Nat. Biotechnol. 2001, 19, 722–726. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Dimitrov, S.D.; Diderich, R.; Sobanski, T.; Pavlov, T.S.; Chankov, G.V.; Chapkanov, A.S.; Karakolev, Y.H.; Temelkov, S.G.; Vasilev, R.A.; Gerova, K.D.; et al. QSAR Toolbox – workflow and major functionalities. SAR QSAR Environ. Res. 2016, 27, 203–219. [Google Scholar] [CrossRef]
- Jing, P.; Zhao, S.; Ruan, S.; Sui, Z.; Chen, L.; Jiang, L.; Qian, B. Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem. 2014, 145, 365–371. [Google Scholar] [CrossRef]
- Tosco, P.; Balle, T. Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J. Mol. Model. 2011, 17, 201–208. [Google Scholar] [CrossRef]
- Ambure, P.; Halder, A.K.; Díaz, H.G.; Cordeiro, M.N.D.D.S. QSAR-Co: An Open Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR Models. J. Chem. Inf. Model. 2019, 59, 2538–2544. [Google Scholar] [CrossRef]
- Vainio, M.J.; Johnson, M.S. McQSAR: A Multiconformational Quantitative Structure−Activity Relationship Engine Driven by Genetic Algorithms. J. Chem. Inf. Model. 2005, 45, 1953–1961. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, G.; Ma, L.; Qian, Y.; Zhu, X.; Chen, Y. Experimental characterization of a SESAM mode-locked Yb:YAG thin disk laser. In High-Power Lasers and Applications IX; SPIE, 2018; pp. 105–111. [Google Scholar] [CrossRef]
- Nunes, A.M.V.; Andrade, F.d.C.P.d.; Filgueiras, L.A.; Maia, O.A.d.C.; Cunha, R.L.; Rodezno, S.V.; Filho, A.L.M.M.; Carvalho, F.A.d.A.; Braz, D.C.; Mendes, A.N. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environ. Toxicol. Pharmacol. 2020, 80, 103470. [Google Scholar] [CrossRef] [PubMed]
- Tetko, I.V.; Tanchuk, V.Y. Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program. J. Chem. Inf. Comput. Sci. 2002, 42, 1136–1145. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Singla, D.; Mondal, A.K.; Raghava, G.P. DrugMint: a webserver for predicting and designing of drug-like molecules. Biol. Direct 2013, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Shaker, B.; Yu, M.-S.; Song, J.S.; Ahn, S.; Ryu, J.Y.; Oh, K.-S.; Na, D. LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 2021, 37, 1135–1139. [Google Scholar] [CrossRef]
- Banerjee, P.; O Eckert, A.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Yu, M.-S.; Kazmi, S.R.; Oh, S.Y.; Rhee, K.-H.; Bae, M.-A.; Lee, B.H.; Shin, D.-S.; Oh, K.-S.; Ceong, H.; et al. Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinform. 2019, 20. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef]
- (PDF) ToxiPred: A Server for Prediction of Aqueous Toxicity of Small Chemical Molecules in T. Pyriformis. ResearchGate 2025. [CrossRef]
- Seo, E.-J.; Klauck, S.M.; Efferth, T.; Panossian, A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity - transcriptome-wide microarray analysis of neuroglia cells. Phytomedicine 2019, 56, 246–260. [Google Scholar] [CrossRef]
- Zhao, F.; Guochun, L.; Yang, Y.; Shi, L.; Xu, L.; Yin, L. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. J. Ethnopharmacol. 2015, 168, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, R.; Lu, J.; Jiang, Y.; Huang, T.; Cai, Y. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022, 22, e2100190. [Google Scholar] [CrossRef]
- Du, H.; Zhao, X.; Zhang, A. Identifying potential therapeutic targets of a natural product Jujuboside B for insomnia through network pharmacology. Plant Sci. Today 2014, 1, 69–79. [Google Scholar] [CrossRef]
- Tao, Q.; Du, J.; Li, X.; Zeng, J.; Tan, B.; Xu, J.; Lin, W.; Chen, X.-L. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev. Ind. Pharm. 2020, 46, 1345–1353. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Liu, K.; Hu, X.; Gu, X. Advances in drug discovery based on network pharmacology and omics technology. Curr. Pharm. Anal. 2024, 21, 33–43. [Google Scholar] [CrossRef]
- Tepap, C.Z.; Ibrahim, R.H. Network Pharmacology-based Approach to Investigate the Mechanism of Folium Artemisiae Argyi in the Treatment of Hepatocellular Carcinoma. Int. J. Adv. Life Sci. Res. 2025, 08, 74–94. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, T.; Zhou, X.; Tang, X.; Gao, R.; Xu, L.; Wang, L.; Zhou, Z.; Lin, J.; Hu, Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci. Rep. 2020, 10, 15730. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. In Statistical Genomics; Springer: New York, NY, USA, 2016; pp. 93–110. [Google Scholar]
- Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins: Struct. Funct. Bioinform. 1992, 13, 206–222. [Google Scholar] [CrossRef] [PubMed]

| Name | Description | URL | Ref. |
|---|---|---|---|
| CASTp 3.0 | Identifies and provides detailed geometric measurements of all potential surface pockets and interior cavities in a protein structure. | http://sts.bioe.uic.edu/castp/ | [34] |
| SiteMap | Employs a grid-based method to locate and rank putative binding sites according to a proprietary score (SiteScore) that evaluates their ligand-binding suitability. | https://www.schrodinger.com/products/sitemap | [35] |
| Fpocket | An open-source, fast geometry-based pocket detection algorithm designed for large-scale binding site prediction. | https://github.com/DisorderedProteins/fpocket | [29] |
| 3DLigandSite | Utilizes homology modeling; it predicts a 3D structure for an input sequence and infers binding sites by mapping ligands from homologous protein-ligand complexes. | http://www.sbg.bio.ic.ac.uk/~3dligandsite/ | [36] |
| PocketDepth | A geometry-based method that identifies ligand binding pockets by evaluating the depth and shape of protein surface cavities. | http://proline.physics.iisc.ernet.in/pocketdepth/ | [37] |
| DeepSite | A deep learning-based method that uses a 3D convolutional neural network to predict protein binding pockets. | https://www.playmolecule.com/deepsite/ | [27] |
| DoGSiteScorer | An automated pocket detection and analysis tool that calculates physicochemical properties and druggability of predicted binding pockets. | https://proteins.plus/ | [30] |
| POCASA | Predicts ligand binding sites by scanning the protein surface for regions that can accommodate a spherical probe. | http://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html | [33] |
| Q-SiteFinder | Identifies binding sites by computing the van der Waals interaction energies between the protein and a methyl probe. | http://www.modelling.leeds.ac.uk/qsitefinder/ | [24] |
| RaptorX-Binding Site | Predicts ligand binding sites using a combination of template-based and ab initio methods, leveraging deep learning for quality assessment. | http://raptorx2.uchicago.edu/ | [31] |
| COACH | A meta-server approach that combines predictions from multiple methods (e.g., TM-SITE, S-SITE) to generate consensus ligand binding site predictions. | https://yanglab.nankai.edu.cn/COACH/ | [32] |
| Database | Description | URL | Ref. |
|---|---|---|---|
| Zinc15 | A comprehensive repository of over 230 million commercially available, “ready-to-dock” small molecules in 3D formats. | https://zinc15.docking.org/ | [51] |
| PubChem | A vast public repository containing information on approximately 11 million unique chemical structures, alongside bioactivity data from high-throughput screening assays. | https://pubchem.ncbi.nlm.nih.gov/ | [52] |
| ChemBridge | Provides a diverse collection of over 1.3 million small molecules, including both structurally diverse libraries and target-focused sets for screening. | https://www.chembridge.com/ | [53] |
| BindingDB | A specialized database focusing on measured binding affinities, containing data for over 1.2 million interactions between 520,000+ compounds and 5,500+ protein targets. | http://bindingdb.org | [54] |
| Asinex | Offers a curated library of more than 90,000 lead-like compounds, designed for efficient virtual screening and hit identification. | http://www.asinex.com/ | [55] |
| Tool | Brief Description | URL | Ref. |
|---|---|---|---|
| AutoDock Vina | Known for its speed and accuracy; utilizes a hybrid global optimization algorithm and accommodates flexibility in receptor side chains. | http://vina.scripps.edu/ | [56] |
| Glide | Employs hierarchical filters for rapid docking with multiple precision modes (SP, XP, HTVS) for scoring and ranking ligand poses. | https://www.schrodinger.com/glide | [57] |
| GOLD | Uses a genetic algorithm for conformational sampling and evaluates poses with functions like GoldScore and ChemScore. | https://www.ch.cam.ac.uk/computing/software/gold-suite | [58] |
| DOCK | A comprehensive suite that factors in desolvation, conformational entropy, and solvation, while supporting receptor flexibility. | http://dock.compbio.ucsf.edu/ |
[59] |
| MOE | An integrated software platform featuring robust tools for molecular modeling, virtual screening, and structure-based design, including docking. | https://www.chemcomp.com/Products.htm | [60] |
| HADDOCK | A highly adaptable approach for modeling diverse complexes, including protein-ligand, protein-protein, and protein-nucleic acid interactions. | https://wenmr.science.uu.nl/haddock2.4/ | [61] |
| FITTED | A genetic algorithm-based program designed to handle macromolecular flexibility and the role of key water molecules in binding. | http://mgltools.scripps.edu/documentation/links/fitted | [62] |
| FlipDock | Docks a flexible ligand into a fully flexible receptor binding site to address full conformational flexibility. | http://flipdock.scripps.edu/ | [63] |
| LigandFit | Combines cavity detection with a Monte Carlo conformational search to generate and score ligand poses within active sites. | https://www.phenix-online.org/documentation/reference/ligandfit.html | [64] |
| pyDOCK | A fast, efficient web server for rigid-body docking using an advanced scoring function. | https://life.bsc.es/pid/pydockweb/ | [65] |
| ClusPro | An FFT-based server optimized for the rapid and accurate prediction of peptide-protein interactions. | https://cluspro.bu.edu/publications.php | [66] |
| ZDock | Predicts protein-protein interactions using an FFT-based algorithm to explore rotational and translational space. | http://zdock.umassmed.edu | [67] |
| PatchDock | Uses a geometry-based algorithm to predict structures of protein-protein and protein-small molecule complexes. | https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php | [68] |
| FlexX | Utilizes a fragment-based method, placing core fragments in the binding site and reconstructing the complete ligand for scoring. | https://www.biosolveit.de/SeeSAR/#FlexX | [69] |
| Discovery Studio | A comprehensive modeling environment integrating docking with molecular dynamics, QM/MM, pharmacophore modeling, and QSAR. | https://www.discoverystudio.com/discovery.studio | [70] |
| Surflex-Dock | A platform within the BioPharma suite providing tools for structure preparation, virtual screening, and ligand modeling. | https://www.biopharmics.com/ | [71] |
| GEMDOCK | Uses a generic evolutionary method and a proprietary empirical scoring function for predicting ligand binding. | http://gemdock.life.nctu.edu.tw/dock/ | [72] |
| EquiBind | A deep learning model that performs direct, “blind” prediction of ligand binding poses without the need for a traditional search procedure. | https://github.com/HannesStark/EquiBind | [49] |
| DiffDock | A diffusion-based generative model for molecular docking that provides confidence estimates for its predicted ligand poses. | https://github.com/gcorso/DiffDock | [48] |
| GNINA | Utilizes convolutional neural networks (CNNs) for both pose prediction and scoring, offering high accuracy in structure-based virtual screening. | https://github.com/gnina/gnina | [50] |
| Tool | Description | URL | Ref. |
|---|---|---|---|
| QSAR ToolBox | An integrated platform that facilitates chemical grouping and read-across by combining experimental data, computational tools, and theoretical knowledge to identify structurally similar compounds. | https://qsartoolbox.org/ | [113] |
| SYBYL-X | A comprehensive molecular modeling suite for small and macromolecular design, supporting lead identification and optimization through various computational methods. | https://chemweb.ir/downloads/sybyl-x-suite/ | [114] |
| Open3DQSAR | A specialized tool for generating 3D-QSAR models through pharmacophore mapping and partial least squares (PLS) regression analysis. | http://open3dqsar.sourceforge.net/ | [115] |
| QSAR-Co | Enables the construction of multi-target classification QSAR models using machine learning algorithms such as Random Forest and Linear Discriminant Analysis. | https://sites.google.com/view/qsar-co | [116] |
| McQSAR | Utilizes a Monte Carlo-based genetic algorithm for the automated generation and optimization of QSAR models. | http://users.abo.fi/mivainio/mcqsar/index.php | [117] |
| Name | Brief Description | URL | Ref. |
|---|---|---|---|
| SwissADME | Computes physicochemical properties and predicts pharmacokinetic (ADME) parameters. | http://www.swissadme.ch/ | [118] |
| ADMETlab | A comprehensive platform for the systematic evaluation of ADMET properties. | http://admet.scbdd.com/ | [119] |
| PreADMET 2.0 | Predicts absorption, distribution, metabolism, excretion, and toxicity parameters. | https://preadmet.bmdrc.kr/preadmet-pc-version-2-0/ | [120] |
| ALOGPS 2.1 | Predicts key physicochemical properties like lipophilicity (LogP) and water solubility. | http://www.vcclab.org/lab/alogps/ | [121] |
| DrugMint | Assesses the drug-likeness of small molecules using various screening rules. | https://webs.iiitd.edu.in/oscadd/drugmint/ | [122] |
| LightBBB | Predicts blood-brain barrier (BBB) permeability for chemical compounds. | http://bioanalysis.cau.ac.kr:7030/ | [123] |
| ProTox-II | A virtual lab for predicting the toxicity of small molecules, including organ toxicity. | http://tox.charite.de/protox_II/ | [124] |
| CardPred | Estimates cardiotoxicity risk by predicting hERG channel blockade liability. | http://bioanalysis.cau.ac.kr:7050/ | [125] |
| ToxinPred2 | Predicts and assists in the design of toxic versus non-toxic peptides. | https://webs.iiitd.edu.in/raghava/toxinpred2/index.html | [126] |
| ToxiPred | Predicts compound toxicity using quantitative structure-activity relationship (QSAR) models. | http://crdd.osdd.net/oscadd/toxipred/ | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
