Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Soil sampling
2.2. Microwave heating and soil temperature measurement
2.3. Experimental design
2.4. Greenhouse for germination analyses
2.5. Soil physiochemical properties and microbial quantification
2.6. Data analysis
3. Results
3.1. Impact of microwave energy on soil temperature
3.2. Impact of microwave energy on total germinability index (TGI)
3.3. Impact of microwave energy on soil physiochemical properties
3.4. Impact of microwave energy on soil microbes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Grain production worldwide 2022/23, by type. Statista. 2023a. Available online: https://www.statista.com/statistics/263977/ (accessed on 28 September 2023).
- Shahbandeh, M. Rice – statistics & facts. Statista. 2023b. Available online: https://www.statista.com/topics/1443/rice/#topicOverview// (accessed on 28 September 2023).
- UAEX. University of Arkansas Division of Agriculture, Cooperative Extension Service. 2023. Available online: https://www.uaex.uada.edu/farm-ranch/crops-commercial-horticulture/rice/ (accessed on 28 September 2023).
- Chauhan, B.S. Grand challenges in weed management. Frontiers in Agronomy 2020, 1, 3. [Google Scholar] [CrossRef]
- Kraehmer, H.; Jabran, K.; Mennan, H.; Chauhan, B.S. Global distribution of rice weeds–a review. Crop Protection 2016, 80, 73–86. [Google Scholar] [CrossRef]
- Durand-Morat, A.; Nalley, L.L.; Thoma, G. The implications of red rice on food security. Global Food Security 2018, 18, 62–75. [Google Scholar] [CrossRef]
- Roma-Burgos, N.; Norman, R.J.; Gealy, D.R.; Black, H. Competitive N uptake between rice and weedy rice. Field crops research 2006, 99, 96–105. [Google Scholar] [CrossRef]
- Roma-Burgos, N.; Butts, T.R.; Werle, I.S.; Bottoms, S.; Mauromoustakos, A. Weedy rice update in Arkansas, USA, and adjacent locales. Weed Science 2021, 69, 514–525. [Google Scholar] [CrossRef]
- Roma-Burgos, N.; Heap, I.M.; Rouse, C.E.; Lawton-Rauh, A.L. Evolution of herbicide-resistant weeds. In Chapter 6; Korres, NE, Burgos, NR, Duke, SO, Eds.; CRC Press, Taylor & Francis Group, 2019; pp. Pages 92–132. [Google Scholar]
- Ziska, L.H.; Gealy, D.R.; Burgos, N.; Caicedo, A.L.; Gressel, J.; Lawton-Rauh, A.L.; Merotto, A., Jr. Weedy (red) rice: an emerging constraint to global rice production. Advances in agronomy 2015, 129, 181–228. [Google Scholar]
- Nelson, S.O. A review and assessment of microwave energy for soil treatment to control pests. Trans. ASAE 1996, 39, 281–289. [Google Scholar] [CrossRef]
- Sartorato, I.; Zanin, G.; Baldoin, C.; De Zanche, C. Observations on the potential of microwaves for weed control. Weed Res. 2006, 46, 1–9. [Google Scholar] [CrossRef]
- Brodie, G.; Ryan, C.; Lancaster, C. The effect of microwave radiation on prickly paddy melon (Cucumis myriocarpus). International Journal of Agronomy 2012, 2012, 287608. [Google Scholar] [CrossRef]
- Brodie, G.; Khan, M.J.; Gupta, D.; Foletta, S.; Bootes, N. Microwave weed and soil treatment in agricultural systems. AMPERE Newsletter 2017, 93, 9–17. [Google Scholar]
- Khan, M.J.; Brodie, G.I. Microwave weed and soil treatment in rice production. Rice Crop. Curr. Dev 2018, 99–127. [Google Scholar]
- Mavrogianopoulos, G.N.; Frangoudakis, A.; Pandelakis, J. Energy efficient soil disinfestation by microwaves. Journal of agricultural engineering research 2000, 75, 149–153. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I. Bare soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on geoscience and remote sensing 1985, 1, 35–46. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Jackson, T.J. Observed effects of soil organic matter content on the microwave emissivity of soils. Remote Sensing Environ. 1990, 31, 175–182. [Google Scholar] [CrossRef]
- Brodie, G.; Ryan, C.; Lancaster, C. Microwave technologies as part of an integrated weed management strategy: A review. International Journal of Agronomy 2012, 2012, 636905. [Google Scholar] [CrossRef]
- Brodie, G.; Hamilton, S.; Woodworth, J. An assessment of microwave soil pasteurization for killing seeds and weeds. Plant Prot. Qtly 2007, 22, 143–149. [Google Scholar]
- Wayland, J.R.; Davis, F.S.; Merkle, M.G. Toxicity of an UHF device to plant seeds in soil. Weed Sci. 1973, 21, 161–162. [Google Scholar] [CrossRef]
- Menges, R.M.; Wayland, J.R. UHF electromagnetic energy for weed control in vegetables. Weed Sci. 1974, 22, 584–590. [Google Scholar] [CrossRef]
- Barker, A.V.; Craker, L.E. Inhibition of weed seed germination by microwaves. Agron. J. 1991, 83, 302–305. [Google Scholar] [CrossRef]
- Barker, A.V.; Craker, L.E. Inhibition of weed seed germination by microwaves. Agron. J. 1991, 83, 302–305. [Google Scholar] [CrossRef]
- Bojko, O.; Kabala, C. Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes—A case study from the Karkonosze Mountains, SW Poland. Catena 2016, 140, 43–54. [Google Scholar] [CrossRef]
- Auyeung, D.N.; Martiny, J.B.; Dukes, J.S. Nitrification kinetics and ammonia-oxidizing community respond to warming and altered precipitation. Ecosphere 2015, 6, 1–17. [Google Scholar] [CrossRef]
- Waghmode, T.R.; Chen, S.; Li, J.; Sun, R.; Liu, B.; Hu, C. Response of nitrifier and denitrifier abundance and microbial community structure to experimental warming in an agricultural ecosystem. Frontiers in microbiology 2018, 9, 474. [Google Scholar] [CrossRef]
- Guo, J.; Ling, N.; Chen, H.; Zhu, C.; Kong, Y.; Wang, M.; Guo, S. Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment. Soil Biology and Biochemistry 2017, 115, 403–414. [Google Scholar] [CrossRef]
- Khan, M.J.; Jurburg, S.D.; He, J.; Brodie, G.; Gupta, D. Impact of microwave disinfestation treatments on the bacterial communities of no-till agricultural soils. European Journal of Soil Science 2020, 71, 1006–1017. [Google Scholar] [CrossRef]
- Scarlett, K.; Denman, S.; Clark, D.R.; Forster, J.; Vanguelova, E.; Brown, N.; Whitby, C. Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. The ISME Journal 2021, 15, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yang, X.; Hao, S.; Hei, Z.; Chen, B.; Hu, H.; Chen, Y. Temperate grassland soil nitrifiers are more sensitive to nitrogen addition than simulated warming. Applied Soil Ecology 2024, 195, 105214. [Google Scholar] [CrossRef]


| Properties | Soil sample |
| pH | 6.7 |
| EC (μmhos/cm) | 529.0 |
| P (mg/kg) | 31.2 |
| K (mg/kg) | 275.3 |
| Ca (mg/kg) | 3810.2 |
| Mg (mg/kg) | 977.6 |
| S (mg/kg) | 36.2 |
| Na (mg/kg) | 123.4 |
| Fe (mg/kg) | 335.5 |
| Mn (mg/kg) | 366.2 |
| Zn (mg/kg) | 3.0 |
| Cu (mg/kg) | 2.7 |
| B (mg/kg) | 1.4 |
| Percentage Loss on Ignition | 5.8 |
| Total Nitrogen (%) | 0.2 |
| Total Carbon (%) | 2.9 |
| Factors | Levels | Total number of experiments |
| Microwave power (kW) | 10, 20 and 30 | 3×3×2 = 18 |
| Soil depth (cm) | 2.5, 8.9 and 15.2 | |
| Replication | 1 and 2 |
| Microwave power (kW) |
Soil depth (cm) |
Soil volume (cm3) |
Soil mass (kg) |
Specific energy (kJ/kg soil) |
Soil temperature (°C)* |
| 10 | 2.5 | 500 | 1.5 | 200 | 77.5 |
| 10 | 8.9 | 1780 | 3.4 | 88 | 40.9 |
| 10 | 15.2 | 3040 | 4.8 | 63 | 38.6 |
| 20 | 2.5 | 500 | 1.5 | 400 | 92.3 |
| 20 | 8.9 | 1780 | 3.4 | 176 | 53.6 |
| 20 | 15.2 | 3040 | 4.8 | 125 | 41.3 |
| 30 | 2.5 | 500 | 1.5 | 600 | 95.5 |
| 30 | 8.9 | 1780 | 3.4 | 265 | 70.0 |
| 30 | 15.2 | 3040 | 4.8 | 188 | 58.3 |
| Factors | Levels | P-value |
| Microwave power (kW) | 10, 20 and 30 | 0.0009* |
| Soil depth (cm) | 2.5, 8.9, 15.2 | 0.0003* |
| Replication | 1 and 2 | 0.3533 |
| Soil physicochemical properties | P-value* | Mean values of soil physicochemical properties for treated soil (MW power-Soil depth) | ||||||||||
| MW power | Soil depth | 10 kW-2.5 cm | 10 kW-8.9 cm | 10 kW-15.2 cm | 20 kW-2.5 cm | 20 kW-8.9 cm | 20 kW-15.2 cm | 30 kW-2.5 cm | 30 kW-8.9 cm | 30 kW-15.2 cm | Control # | |
| Soil pH | 0.0083* | 0.8148 | 6.6 b | 6.6 b | 6.6 b | 6.5 b | 6.7 ab | 6.7 ab | 6.8 a | 6.8 a | 6.8 a | 6.7 ab |
| Electrical Conductivity (μmhos/cm) | 0.0873 | 0.0307* | 465.0 b | 500.0 ab | 516.0 ab | 497.5 ab | 519.5 ab | 567.0 a | 510.5 ab | 498.0 ab | 517.5 ab | 529.0 ab |
| Phosphorus (mg/kg) | 0.2354 | 0.6804 | 31.8 b | 34.0 ab | 33.7 ab | 35.0 a | 34.6 ab | 32.8 b | 34.8 ab | 34.0 ab | 34.2 ab | 31.2 b |
| Potassium (mg/kg) | 0.0459* | 0.0138* | 263.8 b | 292.7 ab | 296.0 ab | 264.1 b | 262.9 b | 315.1 a | 259.3 b | 258.5 b | 266.0 b | 275.3 b |
| Calcium (mg/kg) | 0.6229 | 0.3466 | 3724.5 a | 3909.9 a | 3854.5 a | 3807.2 a | 3753.2 a | 4071.3 a | 3969.2 a | 3852.4 a | 3921.1 a | 3810.2 a |
| Magnesium (mg/kg) | 0.7329 | 0.4565 | 969.5 a | 1054.9 a | 989.5 a | 951.0 a | 936.1 a | 1062.4 a | 1023.4 a | 982.8 a | 1023.8 a | 977.6 a |
| Sulphur (mg/kg) | 0.5758 | 0.4557 | 30.6 a | 37.4 a | 34.4 a | 39.5 a | 35.5 a | 41.0 a | 50.4 a | 31.9 a | 30.9 a | 36.2 a |
| Sodium (mg/kg) | 0.7734 | 0.5843 | 121.8 a | 132.2 a | 123.6 a | 126.1 a | 119.1 a | 136.7 a | 134.4 a | 123.6 a | 130.5 a | 123.4 a |
| Iron (mg/kg) |
0.5742 | 0.5728 | 371.9 a | 312.0 b | 349.0 b | 336.0 b | 342.8 b | 323.9 b | 316.4 b | 324.6 b | 344.5 b | 335.5 b |
| Manganese (mg/kg) | 0.1021 | 0.0151* | 168.6 ab | 287.8 a | 349.6 a | 63.0 b | 246.2 ab | 181.0 ab | 123.1 | 187.3 ab | 274.7 a | 366.2 a |
| Zinc (mg/kg) |
0.4121 | 0.7018 | 3.0 a | 3.2 a | 3.2 a | 3.0 a | 3.1 a | 2.9 a | 3.3 a | 3.1 a | 3.0 a | 3.0 a |
| Copper (mg/kg) | 0.6767 | 0.3384 | 2.1 a | 3.4 a | 2.8 a | 2.4 a | 2.7 a | 2.9 a | 3.1 a | 3.0 a | 2.8 a | 2.7 a |
| Boron (mg/kg) | 0.7832 | 0.1711 | 1.8 a | 1.5 a | 1.5 a | 1.7 a | 1.6 a | 1.7 a | 1.6 a | 1.7 a | 1.6 a | 1.4 a |
| Percentage Loss on Ignition | 0.4149 | 0.2857 | 6.1 a | 5.4 a | 6.2 a | 6.3 a | 5.9 a | 5.9 a | 5.6 a | 5.5 a | 5.9 a | 5.8 a |
| Total Nitrogen (%) | 0.6445 | 0.5574 | 0.3 a | 0.2 a | 0.3 a | 0.3 a | 0.2 a | 0.3 a | 0.2 a | 0.2 a | 0.2 a | 0.2 a |
| Total Carbon (%) | 0.4922 | 0.5354 | 3.0 a | 2.6 a | 3.0 a | 3.2 a | 2.9 a | 2.9 a | 2.7 a | 2.7 a | 2.8 a | 2.9 a |
| Soil Microbes | P-value* | Mean values of soil microbes for treated soil (MW power-duration) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Treatment (MW power-duration) | 10 kW-30 sec | 10 kW-60 sec | 10 kW-90 sec | 20 kW-30 sec | 20 kW-60 sec | 20 kW-90 sec | 30 kW-30 sec | 30 kW-60 sec | 30 kW-90 sec | Control # | |
| Total bacteria (copies per g of soil) | 0.0767 | 4.1*108 a | 3.5*108 ab | 2.7*108 abc | 0.7*108 c | 1.7*108 bc | 2.1*108 abc | 2.6*108 abc | 2.0*108 abc | 0.8*108 c | 1.4*108 bc |
| AOA (copies per g of soil) | 0.1313 | 2.7*107 ± ab | 2.4*106 ± bc | 4.2*105 c | 1.1*104 c | 1.7*104 c | 8.9*104 c | 4.4*104 c | 4.1*105 c | 2.9*105 c | 3.0*107 a |
| AOB (copies per g of soil) | <0.0001* | 1.7*108 b | 3.5*107 b | 3.7*107 b | 4.2*107 ± b | 2.4*107 b | 2.0*107 b | 2.7*107 b | 1.8*107 b | 9.7*106 b | 9.1*108 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).