Submitted:
06 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Method
- 1.
- 2.
- Having calculated the amplitudes, we use them in Eq. (3) and, in the long wave approximation, determine the NPL susceptiblity.
- 3.
- The so obtained susceptibility enables to calculate the optical functions (electro-reflectivity, transmissivity, absorption).
3. The Electric Field Parallel to the Z-Axis
| Parameter | 3ML | 4ML | 5ML |
| 1 | 1.33 | 1.67 | |
| 0.2567 | 0.2015 | 0.1635 | |
| 0.3208 | 0.2519 | 0.2044 | |
| 1.236 | 1.575 | 1.94 | |
| 1.1925 | 0.9754 | 0.8153 | |
| 0.4957 | 0.4337 | 0.3879 | |
| 0.4149 | 0.3659 | 0.3302 | |
| 0.8121 | 0.6887 | 0.5963 | |
| 0.2112 | 0.167 | 0.1362 | |
| 0.1586 | 0.13 | 0.1094 | |
| 1.236 | 1.575 | 1.94 | |
| 0.989 | 1.26 | 1.55 | |
| 0.266 | 0.325 | 0.389 | |
| 0.765 | 0.867 | 0.961 | |
| 918.13 | 686.81 | 530 | |
| 221.13 | 162.1 | 130 | |
| 579.53 | 352.26 | 277.58 | |
| 1139.4 | 816.8 | 636 | |
| 1497.4 | 1036.5 | 783.1 | |
| 96.98 | 76.12 | 61.77 | |
| 73.58 | 60.20 | 51.28 | |
| 450.5 | 368.5 | 308 | |
| 156.74 | 138.23 | 124,66 | |
| 86.88 | 69.67 | 57.49 | |
| 1.6243 | 1.8789 | 2.1062 | |
| 0.3929 | 0.4269 | 0.4488 | |
| 0.20 | 0.18 | 0.17 | |
| 0.22 | 0.19 | 0.18 |
4. Results of Specific Calculations for
- 3ML ,,
- 4ML ,
- 5 ML .




| lat. extension | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1.26 | 1.553 | 1.26 | 1.26 | 1.26 | |
| 27 | 9 | 10.25 | 9 | 10.25 | 27 | |
| 27 | 7.15 | 6.6 | 7.15 | 8.134 | 21.455 | |
| 1SH | 2640.44 | 2382.2 | 2242.2 | 2540 | 2537.7 | 2531 |
| 469.2 | 520.5 | 553 | 488.6 | 489 | 490.4 | |
| 1SL | 3178.4 | 2745.25 | 2498.4 | 2761 | 2758.7 | 2752 |
| 390 | 451.68 | 496.31 | 449.5 | 449.8 | 450.9 | |
| 0.625 | 0.22 | 0.19 | 0.22 | 0.19 | 0.625 | |
| 4.16 | 4.77 | 5.47 | 4.77 | 4.6 | 4.96 | |
| 3.72 | 3.75 | 4.77 | 3.75 | 4.44 | 4.41 | |
| 4.63 | 2.53 | 2.86 | 2.53 | 2.86 | 2.86 |
5. The Electric Field Parallel to the NPL Plane, Excitation Below Gap


6. Quantum Confined Franz-Keldysh Effect
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Calculations of Stark Shift and Oscillator Strengths for F‖z
Appendix B. Calculations of Stark Shift and Oscillator Strengths for F in NPL Plane
References
- Joo, J.;, Son, J.S.; Kwon, S.G.; Yu, J.H; and Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632.
- Achtstein, A.W.; Schliwa, A.; Prudnikau, A.; Hardzei. M.; Artemyev, M.V.; Thomsen, C.; and Woggon, U. Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets. Nano Lett. 2012, 3151-7. doi: 10.1021/nl301071n. Epub 2012 May 29.
- Benchamekh, R.; Gippius, N.A.; Even, J.; Nestoklon, M.O.; Jancu, J.M.; Ithurria, S.; Dubertret, B.; Efros, A.L.; and Voisin, P. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 2014, 89, 035307. [CrossRef]
- Zelewski, S.J.; Nawrot, K.C.; Żak, A.; Gładysiewicz, M.; Nyk, M.; and Kudrawiec, R. Exciton Binding Energy of Two-Dimensional Highly Luminescent Colloidal Nanostructures Determined from Combined Optical and Photoacoustic Spectroscopies. J. Phys. Chem. Lett. 2019, 10, 3459. doi: 10.1021/acs.jpclett.9b00591.
- Shornikova, E.V.; Yakovlev, D.R.; Gippius, N.A.; Qiang, G.; Dubertret, B., Khan, A.H.; Di Giacomo, A.; Moreells, I.; and Bayer, M. Exciton binding energy in CdSe nanoplatelets measured by one- and two-photon absorption. Nano Lett. 2021, 21, 10525. [CrossRef]
- Brumberg, A.; Harvey, S.M.; Philbin, J.P.; Diroll, T.; Lee, B.; Crooker, S.A.; Wasielewski, M.R; Rabani,E.; and Schaller, R.D. Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets via Magneto-optical Spectroscopy, ACS Nano 2019, 13, 8589. [CrossRef]
- Yu, J.; and Chen, R. Optical properties and applications of two-dimensional CdSe nanoplatelets. InfoMat 2020, 2, 905. DOI: 10.1002/inf2.12106.
- Dutta A.; Medda, A.; and Patra, A. Recent Advances and Perspectives on Colloidal Semiconductor Nanoplatelets for Optoelectronic Applications. The Journal of Physical Chemistry C 2021, 125, 20. [CrossRef]
- Geiregat, P.; Rodá, C.; Tanghe, I.; Singh, S.; Alessio Di Di Giacomo, A.; Lebrun, D.; Grimaldi, G.; Maes, J.; Van Thourhout, D.; Moreels, I.; Houtepen, A.J.; and Hens, Z. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light: Science & Applications 2021, 10, 112. [CrossRef]
- Gonçalves, I.M.; Medda, A.; Bautista, J.E.Q.; Campos, C.L.A.V.; Ghosh, S.; Patra, A.; and Gomes, S.L.A. Saturable absorption and third-order nonlinear refraction of 2D CdSe nanoplatelets resonant with heavy-hole excitonic transitions. Appl. Phys. Lett. 2023, 123, 251108. [CrossRef]
- Akhmetova, A.; Kainarbay, A.; Daurenbekov, D.; Nurakhmetov, T.; Zhangylyssov, K.; and Yussupbekova, B. Effect of Nanoplatelets Thickness on Photoluminescent, Optical, and Electronic Properties of Synthesized CdTe Semiconductor Nanoplatelets. Crystals 2023, 13, 1450. [CrossRef]
- Koshkinbayev, Y.; Ospanova, A.; Akhmetova, A.; Nurakhmetov, T.; Kainarbay, A.; Zhangylyssov, K.; Dorofeev, S.; Vinokurov, A.; Bubenov, S.; and Daurenbekov, D. The Influence of Temperature and Stoichiometry on the Optical Properties of CdSe Nanomaterials 2024, 14(22), 1794; [CrossRef]
- Ngo, H.T. Optical and electronic properties of colloidal CdSe nanoplatelets and related heterostructures. Micro and nanotechnologies/Microelectronics. Université de Lille; Universiteit Gent 2024. ffNNT : 2024ULILN025.
- Czajkowski, G. Optical properties of excitons in CdSe nanoplatelets. J. Biomed. Res. Environ. Sci. 2026 Jan 08;7(1):19. Doi: 10.37871/jbres2230, also: arxiv 2025. arxiv.org/pdf/2511.02857.
- Silva, C.R. da;, Bechstedt, F.; Teles, L.K.; and Marques, M. Electronic and Optical Properties of highly Complex Ga2O3 Polymorphs using approximate quasiparticle DFT+A+1/2. 2024. [CrossRef]
- Grillo, S.; Cignarella , Ch.; Bechstedt, F.; Gori, P.; Palumno, M.; Campi, D.; Marzari, N.; and Pulci, O. Quasiparticle Effects and Strong Excitonic Features in Exfoliable 1D Semiconducting Materials, ACS Nano 2026, 20, 2664. [CrossRef]
- Capellini, G.; Furthmüller, J.; Bechstedt, F.; and Botti, S. Electronic and Optical Properties of Alkaline Earth Metal Fluoride Crystals with the Inclusion of Many-Body Effects: A Comparative Study on Rutile MgF2 and Cubic SrF2, 2023. Symmetry, 15,539. .https://doi:10.3390/sym15020539.
- Furthmüller, J.; Bechstedt, F.; Botti, S.; and Cappellini, G. Influence of spin-orbit interaction and self-consistency on quasiparticle electronic structure and exciton optical spectra beyond Tamm-Dancoff: The case of BaF2 and SrF2. Physical Review B 2025. 112, 195112. [CrossRef]
- Miller, D.A.B.; Chemla, D.S.; Damen, T.C.; Gossard, A.C.; Wiegmann, W.; Wood, T.H.; and Burrus, C.A. Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Phys. Rev. Lett. 1984, 53, 2173.
- Achtstein, A.W.; Prudnikau, A.V.; Ermolenko, M.; Gurinovich, L.I.; Gaponenko, S.V.; Woggon, U.; Baranov, A.V.; Leonov, M.Yu.; Rukhlenko, I.D.; Fedorov, A.V.; and Artemyev, M.V. Electroabsorption by 0D, 1D, and 2D Nanocrystals: A Comparative Study of CdSe Colloidal Quantum Dots, Nanorods, and Nanoplatelets. ACS Nano 2014. DOI: 101021/nn503745u.
- Ziemkiewicz, D.; Czajkowski, G.; Karpiński, K.; and Zielińska-Raczyńska, S. Electro-optical properties of excitons in Cu2O quantum wells. I. Discrete states. Phys. Rev. B 2021, 104, 075303.DOI: 10.1103/PhysRevB.104.075303.
- Baghdasaryan, D.A.; Harutyunyan, V.A.; and Sarkisyan, H.A. Linear and non-linear electrooptical transitions in CdSe nanoplatelets. Optical and Quantum Electronics 2024, 56,1221. [CrossRef]
- Rong, Y.; Huo, Y.; Fei, E.T.; Fiorentino, M.; Tan, M.R.T.; Ochalski, T.; Huyet, G.; Thylen, L.; Chacinski, M.; Kamins, T.I.; and Harries, J.S. High speed optical modulation in Ge quantum wells using quantum confined stark effect. Front. Optoelectron. 2012, 5,82. doi.org/10.1007/s12200-012-0194-9.
- Ziemkiewicz D.; Knez D.; Garcia, E.P.; Zielińska-Raczyńska, S.; Czajkowski, G.; Salandrino A.; Kharintsev. S.S.; Noskov, A.I.; Potma, E.O.; and Fishman, D.A. Two-Photon Absorption in Silicon Using Real Density Matrix Approach. Journ. Chem. Phys. 2024; 161: 144117. doi: 10.1063/5.0219329.
- Landau, L.D; and Lifshitz, E.M. Electrodynamics of Continuous Media, 2nd Ed. by E. M. Lifshitz and L. P. Pitaevskii. 1984, Pergamon Press, Oxford. ISBN 0-08-030276-9.
- Caicedo-Davila, S.; Caprioglio, P.; Lehmann, F.; Levcenco, S.; Stolterfoht, M.; Neher, D.; Kronik, L.; and Abou-Ras, D. Effects of Quantum and Dielectric Confinement on the Emission of Cs-Pb-Br Composites, Adv. Func. Mater. 2023,33, 2305240. [CrossRef]
- Kurtina, D.A.; Long, H.; Chang, S.; Vasiliev, R.B. Solvent effect on chiroptical properties of chiral atomically thin CdSe nanoplatelets capped with enantiomeric ligands. Optical Mat. 2025, 158, 116483. [CrossRef]
- In Handbook of Mathematical Functions; Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. 1964, Dover Publications, ISBN 0-486-61272-4. New York, US. http://www.ams.org/notices/201107/rtx110700905p.pdf,.
- Kalt, H.; and Klingshirn, C.F. Semiconductor optics. 2019, Springer Nature, Cham, Switzerland. [CrossRef]
- Zielińska-Raczyńska, S.; Ziemkiewicz, D.; and Czajkowski, G. Electro-optical properties of Cu2O for P excitons in the regime of Franz-Keldysh oscillations. Phys. Rev. B 2018, 97, 165205.DOI: 10.1103/PhysRevB.97.165205.
- Ziemkiewicz, D.; Czajkowski, G.; Karpiński, K.; and Zielińska-Raczyńska, S. Electro-optical properties of excitons in Cu2O quantum wells. II.Continuum states II. Phys. Rev. B 2021, 104, 075304. DOI: 10.1103/PhysRevB.104.075304.
- Miller, D.A.B.; Chemla, D.S.; and Schmitt-Rink, S. Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. Phys. Rev. B 1986, 33, 6976. [CrossRef]





| Param. | |||
| 3.283 | 3.22 | 3.03 | |
| 10.78 | 10.375 | 9.22 | |
| 1.89 | 1.82 | 1.62 | |
| 4.72 | 4.55 | 4.04 | |
| 4.5 | 4.33 | 3.85 | |
| 227.9 | 226.38 | 281.76 | |
| 2450.166 | 2448 | 2441 | |
| 506 | 506.54 | 508 | |
| 2670.166 | 2668 | 2661 | |
| 464.39 | 464.77 | 466 | |
| 243.52 | 243.04 | 241.67 | |
| 2408.3 | 2410.5 | 2417.36 | |
| 514.88 | 514.41 | 512.95 | |
| 2628.3 | 2630.5 | 2637.6 | |
| 471.8 | 471.4 | 470.12 | |
| 288.15 | 287.46 | 278.72 | |
| 2360.2 | 2362.84 | 2377.42 | |
| 525.36 | 524.79 | 521.57 | |
| 2580 | 2582.84 | 2597.42 | |
| 480.6 | 480.1 | 477.4 | |
| 478.49 | 481.63 | 477.2 | |
| 2174.45 | 2173 | 2177.42 | |
| 570.25 | 570.63 | 569.48 | |
| 2394.45 | 2393.0 | 2397.4 | |
| 517.86 | 518.18 | 517.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.