Submitted:
25 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Effect of Phage and Lysin Application on Rotifer Microbiota
2.1.1. Alpha and Beta Diversity
2.1.2. Microbiota Composition of Rotifer
2.2. Effect of Phage and Lys Application on Zebrafish Microbiota
2.2.1. Alpha and Beta Diversity
2.2.2. Composition of the Larvae Microbiota
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain, Phage, and Endolysin
4.2. Experimental Design
4.3. Nucleic Acid Extraction
4.4. Metagenomic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75.
- Selber-Hnatiw, S.; Rukundo, B.; Ahmadi, M.; Akoubi, H.; Al-Bizri, H.; Aliu, A.F.; Ambeaghen, T.U.; Avetisyan, L.; Bahar, I.; Baird, A.; et al. Human Gut Microbiota: Toward an Ecology of Disease. Front. Microbiol. 2017, 8, 1265–1265. [CrossRef]
- Pérez-Pascual, D.; Vendrell-Fernández, S.; Audrain, B.; Bernal-Bayard, J.; Patiño-Navarrete, R.; Petit, V.; Rigaudeau, D.; Ghigo, J.-M. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection. PLOS Pathog. 2021, 17, e1009302. [CrossRef]
- A Stressmann, F.; Bernal-Bayard, J.; Perez-Pascual, D.; Audrain, B.; Rendueles, O.; Briolat, V.; Bruchmann, S.; Volant, S.; Ghozlane, A.; Häussler, S.; et al. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection. ISME J. 2020, 15, 702–719. [CrossRef]
- Bakke, I.; Coward, E.; Andersen, T.; Vadstein, O. Selection in the host structures the microbiota associated with developing cod larvae ( G adus morhua ). Environ. Microbiol. 2015, 17, 3914–3924. [CrossRef]
- I Vestrum, R.; Attramadal, K.J.K.; Vadstein, O.; Gundersen, M.S.; Bakke, I. Bacterial community assembly in Atlantic cod larvae (Gadus morhua): contributions of ecological processes and metacommunity structure. FEMS Microbiol. Ecol. 2020, 96. [CrossRef]
- Bugten, A.V.; et al. Rearing water microbiomes influence gut microbiota of Atlantic salmon parr. Aquaculture 2022, 548, 737661.
- Lubzens, E.; et al. BiotechRotifers in aquaculture. Hydrobiologia 2001, 446/447, 337–353.
- Munro, P.; Henderson, R.; Barbour, A.; Birkbeck, T. Partial decontamination of rotifers with ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture 1999, 170, 229–244. [CrossRef]
- Vadstein, O.; Bergh, Ø.; Gatesoupe, F.; Galindo-Villegas, J.; Mulero, V.; Picchietti, S.; Scapigliati, G.; Makridis, P.; Olsen, Y.; Dierckens, K.; et al. Microbiology and immunology of fish larvae. Rev. Aquac. 2013, 5, S1–S25. [CrossRef]
- Gatesoupe, F.-J. Lactic acid bacteria increase the resistance of turbot larvae,Scophthalmus maximus,against pathogenic vibrio. Aquat. Living Resour. 1994, 7, 277–282. [CrossRef]
- Skjermo, J.; Vadstein, O. Techniques for microbial control in live feed production. Aquaculture 1999, 177, 333–343.
- Attramadal, K.J.; Salvesen, I.; Xue, R.; Øie, G.; Størseth, T.R.; Vadstein, O.; Olsen, Y. Recirculation as a possible microbial control strategy in the production of marine larvae. Aquac. Eng. 2012, 46, 27–39. [CrossRef]
- Ina-Salwany, M.Y.; Al-Saari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in Fish: A Review on Disease Development and Prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [CrossRef]
- Silva, Y.J.; Costa, L.; Pereira, C.; Mateus, C.; Cunha, Â.; Calado, R.; Gomes, N.C.M.; Pardo, M.A.; Hernandez, I.; Almeida, A. Phage Therapy as an Approach to Prevent Vibrio anguillarum Infections in Fish Larvae Production. PLOS ONE 2014, 9, e114197. [CrossRef]
- Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science 2016, 352, 544–545. [CrossRef]
- Navarrete, P.; et al. Oxytetracycline reduces intestinal microbiota diversity in Atlantic salmon. J. Aquat. Anim. Health 2008, 20, 177–183.
- Murray, C.J.L.; et al. Global burden of antimicrobial resistance in 2019. Lancet 2022, 399, 629–655.
- Zhou, L.; et al. Environmental antibiotics impair zebrafish gut health. Environ. Pollut. 2018, 235, 245–254.
- Hsu, B.B.; Gibson, T.E.; Yeliseyev, V.; Liu, Q.; Lyon, L.; Bry, L.; Silver, P.A.; Gerber, G.K. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe 2019, 25, 803–814.e5. [CrossRef]
- Dissanayake, U.; Ukhanova, M.; Moye, Z.D.; Sulakvelidze, A.; Mai, V. Bacteriophages Reduce Pathogenic Escherichia coli Counts in Mice Without Distorting Gut Microbiota. Front. Microbiol. 2019, 10, 1984. [CrossRef]
- Donati, V.L.; Madsen, L.; Middelboe, M.; Strube, M.L.; Dalsgaard, I. The Gut Microbiota of Healthy and Flavobacterium psychrophilum-Infected Rainbow Trout Fry Is Shaped by Antibiotics and Phage Therapies. Front. Microbiol. 2022, 13, 771296. [CrossRef]
- Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [CrossRef]
- Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012, 7, 1147–1171. [CrossRef]
- Nelson, D.C.; Schmelcher, M.; Rodriguez-Rubio, L.; Klumpp, J.; Pritchard, D.G.; Dong, S.; Donovan, D.M. Endolysins as Antimicrobials. Adv. Virus Res. 2012, 83, 299–365.
- Laanto, E.; Bamford, J.K.H.; Ravantti, J.J.; Sundberg, L.-R. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front. Microbiol. 2015, 6, 829. [CrossRef]
- Kunttu, H.M.T.; Runtuvuori-Salmela, A.; Middelboe, M.; Clark, J.; Sundberg, L.-R. Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout. Antibiotics 2021, 10, 914. [CrossRef]
- Liu, R.; Han, G.; Li, Z.; Cun, S.; Hao, B.; Zhang, J.; Liu, X. Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol. 2022, 67, 573–590. [CrossRef]
- Fiedler, A.W.; Gundersen, M.S.; Vo, T.P.; Almaas, E.; Vadstein, O.; Bakke, I. Phage therapy minimally affects the water microbiota in an Atlantic salmon (Salmo salar) rearing system while still preventing infection. Sci. Rep. 2023, 13, 1–13. [CrossRef]
- Feng, C.; Jia, K.; Chi, T.; Chen, S.; Yu, H.; Zhang, L.; Raza, S.H.A.; Alshammari, A.M.; Liang, S.; Zhu, Z.; et al. Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hydrophila Without Distorting Gut Microbiota. Front. Microbiol. 2022, 13, 898961. [CrossRef]
- Richards, P.J.; Connerton, P.L.; Connerton, I.F. Phage Biocontrol of Campylobacter jejuni in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. Front. Microbiol. 2019, 10, 476. [CrossRef]
- Paralika, V.; Makridis, P. Microbial Interactions in Rearing Systems for Marine Fish Larvae. Microorganisms 2025, 13, 539. [CrossRef]
- Hurtado, L.; Miranda, C.D.; Rojas, R.; Godoy, F.A.; Añazco, M.A.; Romero, J. Live Feeds Used in the Larval Culture of Red Cusk Eel, Genypterus chilensis, Carry High Levels of Antimicrobial-Resistant Bacteria and Antibiotic-Resistance Genes (ARGs). Animals 2020, 10, 505. [CrossRef]
- Steiner, L.X.; Schmittmann, L.; Rahn, T.; Lachnit, T.; Jahn, M.T.; Hentschel, U. Phage-induced disturbance of a marine sponge microbiome. Environ. Microbiome 2024, 19, 1–20. [CrossRef]
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Optimization of Machining Parameters for Corner Accuracy Improvement for WEDM Processing. Appl. Sci. 2023, 12, 10324. [CrossRef]
- Galanakis, C.M. Phenols recovered from olive mill wastewater as additives in meat products. Trends Food Sci. Technol. 2018, 79, 98–105. [CrossRef]
- Cui, X.; Chai, L.; Zhang, Y.; Pan, Y.; Liu, H.; Lei, X.; Le, T. Next-generation antimicrobials: A review of phage lysins as precision weapons against drug-resistant pathogens. Virulence 2025, 16, 2562634. [CrossRef]
- Pottie, J.; De Maesschalck, C.; Van Immerseel, F.; Dewulf, J.; Boyen, F. Phage Lysins as Precision Antimicrobials: Opportunities and Challenges for Microbiome Compatibility. Gut Microbes 2024, 16, 2387144.
- Khan, F. M.; Ahmad, S.; Khan, A.; Ullah, A.; Khan, S. Phage Lysins as Next-Generation Precision Antimicrobials against Drug-Resistant Pathogens. Front. Pharmacol. 2024, 15, 1385261.
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Optimization of Machining Parameters for Corner Accuracy Improvement for WEDM Processing. Appl. Sci. 2023, 12, 10324. [CrossRef]
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Optimization of Machining Parameters for Corner Accuracy Improvement for WEDM Processing. Appl. Sci. 2023, 12, 10324. [CrossRef]
- De Vrieze, J.; Pinto, A.J.; Sloan, W.T.; Ijaz, U.Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 2018, 6, 1–13. [CrossRef]
- Blazewicz, S.J.; Barnard, R.L.; A Daly, R.; Firestone, M.K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013, 7, 2061–2068. [CrossRef]
- Pardo, A.; Villasante, A.; Romero, J. Skin Microbiota of Salmonids: A Procedure to Examine Active Bacterial Populations Using an RNA-Based Approach. Appl. Microbiol. 2023, 3, 485–492. [CrossRef]
- Jamet, E. An eye-tracking study of cueing effects in multimedia learning. Comput. Human Behav. 2014, 32, 47-53. [CrossRef]
- Walburn, J.W.; Wemheuer, B.; Thomas, T.; Copeland, E.; O'COnnor, W.; Booth, M.; Fielder, S.; Egan, S. Diet and diet-associated bacteria shape early microbiome development in Yellowtail Kingfish ( Seriola lalandi ). Microb. Biotechnol. 2018, 12, 275–288. [CrossRef]
- Najafpour, B.; Pinto, P.I.; Sanz, E.C.; Martinez-Blanch, J.F.; Canario, A.V.; Moutou, K.A.; Power, D.M. Core microbiome profiles and their modification by environmental, biological, and rearing factors in aquaculture hatcheries. Mar. Pollut. Bull. 2023, 193, 115218. [CrossRef]
- Roeselers, G.; Mittge, E.K.; Stephens, W.Z.; Parichy, D.M.; Cavanaugh, C.M.; Guillemin, K.; Rawls, J.F. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011, 5, 1595–1608. [CrossRef]
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Optimization of Machining Parameters for Corner Accuracy Improvement for WEDM Processing. Appl. Sci. 2023, 12, 10324. [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B 1986, 44, 139–177.
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [CrossRef]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2005, 62, 245–253. [CrossRef]
- Lin, H.; Peddada, S. Das Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514.







| Source | Group | Comparison |
PERMANOVA R2 P value |
Betadisper P value |
|
| DNA | Rotifer Water |
Lys vs Phage Lys vs Control Phage vs Control Lys vs Phage |
0.074 0.121 0.110 0.109 |
0.875 0.591 0.802 0.035 |
0.490 0.951 0.505 0.842 |
| RNA | Rotifer Water |
Lys vs Phage Lys vs Control Phage vs Control Lys vs Phage |
0.138 0.181 0.101 0.099 |
0.004 0.030 0.872 0.287 |
0.786 0.070 0.086 0.584 |
| Comparison |
PERMANOVA R2 P value |
Betadisper P value |
|
| All Lys vs Control Phage vs Control GV09 vs Control |
0.323 0.227 0.197 0.220 |
0.058 0.1 0.6 0.3 |
0.066 0.218 0.468 0.028 |
| GV09_Lys vs Control GV09_Phage vs Control Lys vs GV09_Lys Phage vs Lys |
0.245 0.234 0.208 0.240 |
0.1 0.1 0.4 0.1 |
0.026 0.031 0.474 0.496 |
| Lys vs GV09 | 0.263 | 0.1 | 0.812 |
| Lys vs GV09_Phage | 0.249 | 0.1 | 0.717 |
| GV09_Lys vs Phage | 0.241 | 0.1 | 0.064 |
| GV09_Lys vs GV09 | 0.223 | 0.2 | 0.032 |
| GV09_Lys vs GV09_Phage | 0.212 | 0.4 | 0.238 |
| Phage vs GV09 | 0.183 | 0.6 | 0.174 |
| Phage vs GV09_Phage | 0.196 | 0.6 | 0.120 |
| GV09 vs GV09_Phage | 0.189 | 0.8 | 0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
