Submitted:
21 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Space Missions of Small Satellites
3. Space-Operated Small Satellites Propulsion Technologies
3.1. Chemical Propulsion
| PS | Entity | Propellant | P, W | T, N | Isp, s | It, kN·s | Size | Mass, kg | Missions (Year) | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| MPSØ | UTokyo | H2O2 | - | 0.5 | <80 | - | - | - | Hodoyoshi-1/Hodoyoshi-3 (2014) | 40299/40015 | [37] |
| EPSS C1K● | NanoAvionics | ADN | 7.5 | <0.3 | 214 | 0.4 | 1.3U | 1* | Lituanica-2 (2017) | 42768 | [38] |
| Steam Propulsion▲ | The Aerospace Corp. | H2O | 12 | 0.004 | 70 | - | <1U | - | Aerocube 7 (2017), Aerocube 10 (2019) | 40966, 44485 | [30] |
| PM200● | Dawn Aerospace | N2O+C3H6 | 12 | 0.5 | 285 | 0.85 | 1U | 1.1* 1.4** |
Hiber-4 (2021) | 47541 | [39] |
| HYDROS-C▲ | Tethers Unlimited | H2O | <25 | >1.2 | <241 | <3.38 | 2U | 2.7** | PTD-1 (2021) | 47482 | [32,40] |
| LFPS▲ | NASA MSFC | ASCENT | <47 | 0.1 | <200 | <3.5 | 2.4U | 5.5** | Lunar Flashlight (2022) | 54697 | [33,34,40] |
| Monopropellant CubeSat System● | Stellar Exploration | Hydroxyzine | - | 0.25 | 200 | - | - | - | NASA Capstone (2022) | 52914 | [41] |
| ArgoMoon Hybrid MiPSX | ECAPS | LMP-103S | 20 | 100 | 190 | 0.783 | 1.3U | 1.43* 2.07** |
ArgoMoon (2022) | 55907 | [42] |
| HyPer▲ | The Aerospace Corp. | H2O4 | - | - | <124 | - | 0.25U | - | Slingshot-1 (2022) | 52947 | [39] |
| HAN-based propulsion unitØ | Hunan Hangsheng Satellite Technology | HAN | - | - | - | - | - | - | Jinta (2023) | 56169 | [43] |
| CubeDrive 0.8U● | Dawn Aerospace | N2O+C3H6 | 15 | 0.49…1.35 | <248 | 0.4 | 0.8U | 1.051* 1.250** |
SC1 (2024) | 62388 | [44] |
| * Dry mass. ** Wet mass. ▲ PS distinct operating parameters of which are available in open information sources. ● PS demonstrated in orbital flights, but data on its characteristics varies in different sources. Ø PS demonstrated in orbital flights, but there are no open data on its characteristics. X Propulsion systems that have been launched into space but have failed to successfully demonstrate its functionality in orbital conditions for various reasons. | |||||||||||
3.2. Cold Gas
| PS | Entity | Propellant | P, W | T, mN | Isp, s | It, N·s | Size | Mass, kg | Missions (Year) | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SNAP-1▲ | SSTL | C4H10 | 15 | 46 | 43 | - | <1U | 0.5 | SNAP-1 (2000) | 26386 | [54] |
| MEPSI▲ | The Aerospace Corporation | Xe | - | 100 | 30 | - | ~1U | 0.188 | STS-11 (2002), STS-11 (2006) | 27556, 29647 | [47,55] |
| T3 µPS▲ | TU Delfi | N2 | 10 | 6 | >30 | - | 0.25U | 0,.2 | Delfi-n3Xt (2013) | 39428 | [39,55] |
| CNAPS▲ | UTIAS | SF6 | 3 | 12.5…50 | 45 | 100 | 2U | 0.26 | CanX-4/CanX-5 (2014) | 40056, 40055 | [39,49,55] |
| POPSAT-HIP1▲ | Microspace Rapid | Ar | 2 | 0.1…0.3 | 32 | 0.6 | 1U | - | POPSAT-HIP1 (2014) | 40028 | [50] |
| NanoProp● CGP3 | GomSpace | C4H10 | 2 | 1 | 60…110 | 40 | 0.5U | 0.35** | TW-1 (2015), Astrocast-0301 (2021), Astrocast-0205 (2022), ESTCube-2 (2023) | 40928, 54370, 48960 | [40,56] |
| Bevo-2 Cold Gas PSX | Georgia Tech SSDL | R236fa | - | 110…150 | 65…89 | 58…80 | - | 0.31* 0.4** |
Bevo-2 (2015) | 41314 | [51] |
| NASA C-POD MiPS● | VACCO | R236fa | 5 | 10 | 40 | 174 | 0.8U | 1.3** | NanoACE (2017), CPOD A/B (2022) | 42844 | [57] |
| MEMS Cold Gas MicroThruster● | CRAS | GN2 | <1 | 1 | - | - | 0.5U | 0.118* | Ursa Maior (2017) | 42776 | [58] |
| MarCO MiPS● | VACCO | R236fa | 0.5 | 25 | 42 | 755 | 2,5U | 3.49** | MarCO-A/MarCO-B (2018) | 43596/43597 | [57] |
| NanoProp● 6U | GomSpace | C4H10 | 2 | 1 | 60…110 | 80 | 200× 100× 50mm3 | 0.9** | GOMX-4B (2018) | 43196 | [59] |
| I2T5● | ThrustMe | I2 | 5 | <0.35 | - | 75 | 0.5U | 0.9** | Xiaoxiang 1-08 (2019), NAPA-2 (2021), Robusta-3A (2024) | 44706, 48963, 60243 | [40] |
| Cold Gas Thruster● | UT Austin | R236-fa | - | 110…170 | 65…100 | - | <1U | - | Armadillo (2019) | 44352 | [60] |
| Seeker Robotic Free Flyer Propulsion SystemØ |
NASA | GN2 | - | 100 | - | - | 1.25U | - | Seeker (2019) | 44533 | [61] |
| NEA Scout Propulsion System● | VACCO | R236fa | <55 | 25 | 40 | 500 | 2U | 1.26* 2.5** |
LiciaCube (2021) | - | [39,40] |
| ASCENT Cold Gas PSØ | Georgia Tech SSDL | - | - | - | - | - | - | - | ASCENT (2021) | 51287 | [51] |
| Tianyuan Cold Gas ThrusterØ | Nanjing University of Science and Technology | - | - | - | - | - | - | - | Tianyuan-1 (2021) | 49315 | [62] |
| GDU● | EDB Fakel | N2 | 9 | 51.9…96.5 | 70…120 | 163× 95×95mm3 | 1.1 | Geoskan Edelweis (2022) | 53385 | [63] | |
| ArgoMoon MiPSX | VACCO | R134a | Разoгрев 20 Рабoта 4,3 |
25 | - | 72 | 1.3U | 1.43* 2.07** |
ArgoMoon (2022) | 55907 | [64] |
| BioSentinel Propulsion System● | Georgia Tech SSDL | R236fa | 4 | 40…70 | 41…47 | 79.8 | 2U | 1.28** | BioSentinel (2022) | 55906 | [40,65] |
| OMOTENASHI propulsion systemX | VACCO | R236fa | - | 25 | - | 584 | 1.7U | 1.62* | OMOTENASHI (2022) | 99345 | [66] |
| Hamlet▲ | NASA Ames | R236fa | - | 2…12 | 42 | - | 2U | 1.47* 2.45** |
Starling 6U (2023) | 57388 | [67] |
| Politekh Univers-3 Ø | St. Petersburg Polytechnic University | R11 | - | - | - | - | - | - | Politekh Univers-3 (2023) | 57191 | [68] |
| Cold Gas Propulsion SystemØ | GomSpace | - | - | - | - | - | 2U | - | Juventas (2024) | - | [69] |
| * Dry mass. ** Wet mass. ▲ PS distinct operating parameters of which are available in open information sources. ● PS demonstrated in orbital flights, but data on its characteristics varies in different sources. Ø PS demonstrated in orbital flights, but there are no open data on its characteristics. X Propulsion systems that have been launched into space but have failed to successfully demonstrate its functionality in orbital conditions for various reasons. | |||||||||||
3.3. Electric Propulsion
3.3.1. Electrostatic EP
| PS | Entity | Propellant | P, W | T, mN | Isp, s | It, kN·s | Size | Mass, kg | Missions (Year) | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| MIPS● Microwave | UTokyo | Xe | 27 | 0.21 | 740 | - | 340x260x160mm3 | 8.1 | HODOYOSHI-4 (2014) | 40011 | [88] |
| I-COUPS● ECR | UTokyo | Xe | <38 | <0.35 | 1000 | - | 3U | 9.5** | PROCYON (2014) | 40322 | [89] |
| NPT30-I2▲ | ThrustMe | I2 | <65 | <2.1 | <2500 | 5.5 | 96×96×106mm3 | 1.2** | Hisea-1 (2020), BEIHANGKONGSHI-1 (2020), NorSat-TD (2023) | 47297, 46838, 56194 | [75,76] |
| BIT-3▲ | Busek | I2 | <80 | <1.25 | <2300 | 31.7 | 180×88×102mm3 | 2.9** | Lunar IceCube (2022), LunaH-Map (2022) | 55903 | [77,79,81] |
| Charge Exchange Thruster▲ | University of Sydney | - | 3 | 0.027 | - | - | 100x90x37mm3 | 0.35 | i-INSPIRE II (2017), CUAVA-2 (2024) | 42731, 60527 | [90] |
| ExoMG-nano▲ | Exotrail | Xe | 60 | <3 | 800 | <5 | 2.5U | <2.3* | M6P (2020), ARTHUR (2021), ELO3 (2023), ELO4 (2023) | 44109, 48953, 56216, 56990 | [91] |
| MUSIC-SI● | Aliena | Xe | 100 | <0.25 | <200 | 15 | 1.5U | 2** | NuX-1 (2022) | 51073 | [92] |
| MUSIC Hot Mode● | Aliena | Xe | <100 | 3 | 1000 | 15 | 4U | 5** | ORB-12 Strider (2023) | 57483 | [92] |
| NANO▲ | Enpulsion | In | <40 | 0.22 | 3500 | <12 | 0.8U | 0.9** 0.6* |
Flock 3p (2018), NetSat (2020) NEPTUNO (2021)*** | 43119, 46504, 48966 | [82,83] |
| NanoFEEP (GO-2)● | Morpheus Space | - | <3 | 0.04 | <6000 | 3.4 | 90x25x43mm3 | 0.16* 0.17** |
UWE-4 (2018)*** | 43880 | [85,86,87] |
| MICRO R3 ● | Enpulsion | In | 30…120 | <1.3 | <4500 | >5 | 140×120×133mm3 | 3.9** 2.6* |
GMS-T (2021)*** | 47346 | [82] |
| NANO AR3 ▲ | Enpulsion | In | 45 | <0.35 | <6000 | >5 | 1U | 1.4** 1.2* |
AMS (2022), GS-1 (2023)*** | 52745, 56372 | [93] |
| S-iEPS | MIT | Ionic liquid | 1.5 | 0.075 | <1150 | - | 96x96x21mm3 | 0.095* | AeroCube-8 (2015) | 41852 | [94] |
| TILE 2● | Espace | Ionic liquid | 8 | 0.05 | 1800 | - | 0.5U | 0.48 | Irvine 01 (2018), Irvine 02 (2018), BeaverCube (2021) | 43693, 43789, 53768 | [95] |
| TILE-3Ø | Accion | Ionic liquid | 20 | 0.45 | 1650 | 0.755 | 1U | 2** | D2/AtlaCom-1 (2021) | 48922 | [96] |
| Multi-Mode ThrusterØ | Missouri S&T’s Aerospace Plasma Lab | - | - | 0.25 | 800 | - | - | - | M3 Sat (2024) | - | [97] |
| * Dry mass. ** Wet mass. *** Missions provided for reference. ▲ PS distinct operating parameters of which are available in open information sources. ● PS demonstrated in orbital flights, but data on its characteristics varies in different sources. Ø PS demonstrated in orbital flights, but there are no open data on its characteristics. X Propulsion systems that have been launched into space but have failed to successfully demonstrate its functionality in orbital conditions for various reasons. i Input power. D Power in discharge. | |||||||||||
3.3.2. Electromagnetic EP
| PS | Entity | Propellant | P, W | T, mN (Ibit, µN·s) | Isp, s | It, kN·s | Size | Mass, kg | Missions (Year) | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Maxwell● | Phase Four | Xe | 330 | 5.2 | 750 | - | 220x120x240mm3 | 8.4** | Transporter-1 (2021), Transporter-2 (2021) | 48913, 48912 | [93,103] |
| REGULUS-50-I2● | T4i | I2 | 50 | 0,6 | <700 | 3 | 1.5U | 2.5 | UniSat (2021), NorthStar Earth&Space (2024) | 47945 | [101,102,105] |
| BDEPT▲ | APS | Kr | <120 | <10 | <1400 | 1 | 2U | 3.2 | HORS 1 (2023), HORS 3 (2024) | 57188, 61753 | [12] |
| MPACSØ | Busek | PTFE | <5 | (80) | 827 | - | 1 U | - | FalconSat3 (2007) | 30776 | [93] |
| PROITERES● | Osaka Sangyo University | PTFE | 5 | (2.47) | 340 | 5 N*s | 100x100x50mm3 | 0.71 | PROITERES-1 (2012) | 38756 | [93] |
| PPTX | Surrey Satellite Technologies | - | 1.5 | (0.9) | 1340 | - | 0.25U | - | STRaND-1 (2013) | 39090 | [106] |
| PPT● | Kyushu Institute of Technology | PTFE | 2.3 | (25) | 676 | - | 0.7U | - | Aoba-Velox-III (2016), Aoba-Velox-IV (2019) | 41935, 43940 | [107] |
| PPT● | University of Vienna | PTFE | - | (2.2) | 600 | 5.7 | - | - | PEGASUS (2017) | 42784 | [108] |
| PPT● | University of Washington | S8 | - | - | 1200 | - | 0.6U | - | HuskySat-1 (2019) | 45119 | [109] |
| Poseidon M1.5● | Miles Space | - | 1.5 | 37.5 | 4800 | - | 1U | - | Miles (2022) | - | [110] |
| VERA● | STAR | POM | 5 | (30) | 620 | > 150 | 83×83×55mm3 | < 0.5 | CUBESX-HSE-2 (2022) | 53383 | [111] |
| PETRUS● | University of Stuttgart | PTFE | <1 | (10) | 699 | 3.3 | 84x84x15mm3 | 0.42 | GreenCube (2022), SONATE-2 (2024) | 53106, 59112 | [112] |
| FPPT● | CU Aerospace | PTFE | 48 | (240) | 3500 | 5500 | 1.7U | 1.975* 2.8** |
DUPLEX (2023) | - | [113,114] |
| µVATX | University of Illinois in Urbana-Champaign | Al | 4 | (54) | - | - | 0.4U | 0.15 | Illinois Observing NanoSatellite (2006) | - | [115] |
| μCAT● GWU | George Washington University/US Naval Academy | Ni | <10 | (50) | 3000 | - | 0.5U | - | BRICSat-P 2015 CANYVAL-X Tom (2018), BRICSat 2 (2019) | 40655, 43136, 44355 | [116,117] |
| XANTUS● | Benchmark Space Systems (original developer AASC) | Mo | <100 | (10) | 1764 | 5000 | 94x94x60mm3 | 0.85* 1.4** |
RROCI (2023), RROCI-2 (2024) | 55081, 59106 |
[118] |
| Neumann Drive ND-15● | Neumann Space | - | <24 | (45) | < 2000 | > 880 | 150x100x97mm3 | 1.9** | SpIRIT (2023) | 58468 | [119] |
| * Dry mass. ** Wet mass. ▲ PS distinct operating parameters of which are available in open information sources. ● PS demonstrated in orbital flights, but data on its characteristics varies in different sources. Ø PS demonstrated in orbital flights, but there are no open data on its characteristics. X Propulsion systems that have been launched into space but have failed to successfully demonstrate its functionality in orbital conditions for various reasons. | |||||||||||
3.3.3. Electrothermal EP
| PS | Entity | Propellant | P, W | T, mN | Isp, s | It, N·s | Size | Mass, kg | Missions (Year) | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| FMMRX | AFRL/USC | - | 2 | 0.13 | 80 | 1U | 3CS (2004) | 43728б 41732 | [125] | ||
| WARP-DRiVEX | SSTL | C4H10 | 7 | - | - | - | 0.25U | - | STRaND-1 (2013) | 39090 | [93] |
| Arcjet PUC● |
CU Aerospace/ VACCO | SO2 | 15 | 4.5 | 68 | 184 | 0.25U | 0.72** | 8 PS for U.S.A. Air Force (2014) | - | [81,123] |
| Comet-1000● | Bradford Space | H2O | 55 | 17 | 175 | 1150 | 2.3U | 1.5** | HawkEye 360 (2018) | 47505 | [81,124,126] |
| AQUARIUS 1U● | University of Tokyo | H2O | 18 | <4 | 70 | <250 | 1U | 1.2** 0.8* |
AQT-D (2019), OPTIMAL-1 (2022) | 44791, 99207 | [127] |
| AQUARIUS▲ | University of Tokyo/ Pale Blue | H2O | <20 | <10 | <91 | - | 2.5U | 1.3* 2.5** |
EQUULEUS (2022) | - | [128] |
| ARM-A● | Aurora | H2O | <20 | <4 | 100 | 70 | 0.3U | 0.28** | AuroraSat-1 (2022) | 99169 | [78,81] |
| PBR-10▲ | Pale Blue | H2O | 15 | <1 | - | <55 | 0.5U | 0.575** | ArkEdge Space 6U CubeSat | - | [129] |
| PBR-20▲ | Pale Blue | H2O | <30 | <7 | >60 | <170 | 1.25U | 1.5** | SPHERE-1 EYE (2023) | 55072 | [130] |
| Steam Thruster 1▲ | SteamJet Space Systems | H2O | <20 | 5 | 172 | <100 | 2U | 1* 1.7** |
PHI-Demo (2023) | 57181 | [131] |
| * Dry mass. ** Wet mass. ▲ PS distinct operating parameters of which are available in open information sources. ● PS demonstrated in orbital flights, but data on its characteristics varies in different sources. Ø PS demonstrated in orbital flights, but there are no open data on its characteristics. X Propulsion systems that have been launched into space but have failed to successfully demonstrate its functionality in orbital conditions for various reasons. | |||||||||||
3.4. Alternative Propulsion
4. Discussion
4.1. Use of Different Propulsion Systems Types Aboard Civil Small Satellites
4.2. Evaluation Criteria
4.3. Physics Rationale
4.4. Engineering Rational
4.5. Operational Rationale
4.6. Production Rational
4.7. Societal Rational
4.8. Trends and Perspectives in Propulsion Systems for Small Satellites
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CH | Chemical propulsion |
| EP | Electric propulsion |
| EPT | Electrodeless plasma thruster |
| HET | Hall-effect thruster |
| IT | Ion thruster |
| LEO | Low Earth orbit |
| MW | Microwave |
| NORAD | North American Aerospace Defense Command |
| PA | Polyamide |
| PET | Polyethylene terephthalate |
| POM | Polyoxymethylene |
| PPT | Pulsed plasma thruster |
| PS | Propulsion system |
| RF | Radiofrequency |
| SS | Solar sail |
| VAT | Vacuum arc thruster |
References
- Chintalapati, B.; Precht, A.; Hanra, S.; Laufer, R.; Liwicki, M.; Eickhoff, J. Opportunities and challenges of on-board AI-based image recognition for small satellite Earth observation missions. Advances in Space Research 2025, 75(9), 6734–6751. [Google Scholar] [CrossRef]
- Weston, S. V.; Burkhard, C. D.; Stupl, J. M.; Ticknor, R. L.; Yost, B. D.; Austin, R. A.; Galchenko, P.; Newman, L. K.; Soto, L. S. S. State-of-the-art small spacecraft technology. 2025. [Google Scholar]
- Turan, E.; Speretta, S.; Gill, E. Autonomous navigation for deep space small satellites: Scientific and technological advances. Acta Astronautica 2022, 193, 56–74. [Google Scholar] [CrossRef]
- Marrero, L. M.; Merlano-Duncan, J. C.; Querol, J.; Kumar, S.; Krivochiza, J.; Sharma, S. K.; Chatzinotas, S.; Camps, A.; Ottersten, B. Architectures and synchronization techniques for distributed satellite systems: A survey. IEEE Access 2022, 10, 45375–45409. [Google Scholar] [CrossRef]
- Sweeting, M. N. Modern small satellites—changing the economics of space. Proceedings of the IEEE 2018, 106(3), 343–361. [Google Scholar] [CrossRef]
- Ekpo, S. C.; George, D. A system engineering analysis of highly adaptive small satellites. IEEE Systems Journal 2012, 7(4), 642–648. [Google Scholar] [CrossRef]
- Yang, J.; Li, D.; Jiang, X.; Chen, S.; Hanzo, L. Enhancing the resilience of low earth orbit remote sensing satellite networks. IEEE Network 2020, 34(4), 304–311. [Google Scholar] [CrossRef]
- Lowe, C. J.; Macdonald, M. Space mission resilience with inter-satellite networking. Reliability Engineering & System Safety 2020, 193, 106608. [Google Scholar] [CrossRef]
- Crisp, N. H.; Smith, K.; Hollingsworth, P. Launch and deployment of distributed small satellite systems. Acta Astronautica 2015, 114(9/10), 65–78. [Google Scholar] [CrossRef]
- Sauder, J.; Gebara, C.; Reddy, N. H.; García-Mora, C. J. A framework for small satellite deployable structures and how to deploy them reliably. Communications Engineering 2024, 3(1), 72. [Google Scholar] [CrossRef]
- Yaqoob, M.; Lashab, A.; Vasquez, J. C.; Guerrero, J. M.; Orchard, M. E.; Bintoudi, A. D. A comprehensive review on small satellite microgrids. IEEE Transactions on Power Electronics 2022, 37(10), 12741–12762. [Google Scholar] [CrossRef]
- Shumeiko, A.; Telekh, V.; Ryzhkov, S. Thrust-vectoring schemes for electric propulsion systems: A review. Chinese Journal of Aeronautics 2025, 103401. [Google Scholar] [CrossRef]
- Levchenko, I.; Baranov, O.; Pedrini, D.; Riccardi, C.; Roman, H. E.; Xu, S.; et al. Diversity of physical processes: Challenges and opportunities for space electric propulsion. Applied Sciences 2022, 12(21), 11143. [Google Scholar] [CrossRef]
- Liu, H.; Niu, X.; Zeng, M.; Wang, S.; Cui, K.; Yu, D. Review of micro propulsion technology for space gravitational waves detection. Acta Astronautica 2022, 193, 496–510. [Google Scholar] [CrossRef]
- Shumeiko, A. I.; Telekh, V. D.; Mayorova, V. I. Development of a novel wave plasma propulsion module with six-directional thrust vectoring capability. Acta Astronautica 2022, 191, 431–437. [Google Scholar] [CrossRef]
- Lee, D.; Ahn, J. Optimal multitarget rendezvous using hybrid propulsion system. Journal of Spacecraft and Rockets 2023, 60(2), 689–698. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Gurfil, P. Pulsed feedback control for directional rendezvous on eccentric orbits under propulsion constraints. Acta Astronautica 2025. [Google Scholar] [CrossRef]
- Blondel-Canepari, L.; Sarritzu, A.; Pasini, A. A holistic approach for efficient greener in-space propulsion. Acta Astronautica 2024, 223, 435–447. [Google Scholar] [CrossRef]
- Sippel, M.; Wilken, J. Selection of propulsion characteristics for systematic assessment of future European RLV-options. CEAS Space Journal 2025, 17(1), 89–111. [Google Scholar] [CrossRef]
- Shumeiko, A.; Andronov, A.; Pashaev, A.; Savelev, P.; Telekh, V. Starting modes of multidirectional electrodeless plasma thruster with closed ring-shaped gas discharge chamber. Scientific Reports 2025, 13, 23546. [Google Scholar] [CrossRef]
- Savelev, P.; Shumeiko, A.; Telekh, V. Wire-based solid-state propellant management system for small form-factor space propulsion. Inventions 2025, 10(5), 75. [Google Scholar] [CrossRef]
- Andronov, A.; Shumeiko, A.; Pashaev, A.; Tsygankov, P.; Kovalev, S.; Telekh, V. Plume characterization of electrodeless plasma thruster with configurable exhaust. Symmetry 2025, 17(5), 661. [Google Scholar] [CrossRef]
- Shumeiko, A.; Telekh, V. Direct thrust measurements of 2U-sized bi-directional wave plasma thruster. AIP Advances 2023, 13(8), 085106. [Google Scholar] [CrossRef]
- Shumeiko, A.; Telekh, V.; Ryzhkov, S. Starting modes of bidirectional plasma thruster utilizing krypton. Symmetry 2023, 15(9), 1705. [Google Scholar] [CrossRef]
- Shumeiko, A. I.; Jarrar, F. S.; Swei, S. S. Advanced wave plasma thruster with multiple thrust vectoring capability. In AIAA SCITECH 2022 Forum; 2022, p. 2190.
- Shumeiko, A. Multiple Spark Plugs Approach for Pulsed Plasma Thrusters Assisting Resilient Proliferated Space Systems. Preprints.org. [CrossRef]
- Katkuri, V.; Puchakayala, P. K. Micro-propulsion for space applications: a review of traditional and innovative systems. International Journal of Innovative Science and Modern Engineering 2018, 6(10), 67–76. [Google Scholar]
- Belyaev, N. M.; Uvarov, E. I. Calculation and design of reactive control systems for spacecraft. Soviet Rocketry 1974, 247. [Google Scholar]
- DeGroot, W.; Steve, O. Chemical Microthruster Options. Joint Propulsion Conference 1996, 1–20. [Google Scholar]
- Janson, S.; et al. The NASA Optical Communications and Sensor Demonstration Program: Initial Flight Results. 29th Annual Small Satellite Conference, SSC16-III-03. 2016. [Google Scholar]
- Gangestad, J. W.; Venturini, C. C.; Hinkley, D. A.; Kinum, G. A Sat-to-Sat Inspection Demonstration with the AeroCube-10 1.5U CubeSats. 35th Annual Small Satellite Conference, SSC21-I-1. 2021. [Google Scholar]
- Porter, A.; Freedman, M.; Grist, R.; Wesson, C.; Hanson, M. Flight Qualification of a Water Electrolysis Propulsion System. 35th Annual Small Satellite Conference, SSC21-XI-06. 2021. [Google Scholar]
- Kilcoin, M.; et al. Development of ASCENT Propellant Thrusters and Propulsion Systems. 36th Annual Small Satellite Conference, SSC22-X-08. 2022. [Google Scholar]
- Smith, S.; et al. The Journey of the Lunar Flashlight Propulsion System from Launch through End of Mission. 37th Annual Small Satellite Conference, SSC23-VI-03. 2023. [Google Scholar]
- Galvin, M.; et al. HyPer—the On-Orbit Campaign of a Green Monopropellant for Small Satellite Propulsion. AIAA SCITECH 2024 Forum, AIAA 2024-1835. 2024. [Google Scholar]
- Rhodes, B. L.; Piechowski, M.; Hinkley, D.; Ulrich, E. R. HyPer—a Green Monopropellant for Small Satellite Propulsion. 35th Annual Small Satellite Conference, SSC21-XI-02. 2021. [Google Scholar]
- Nishikizawa, S.; Sahara, H.; Miyashita, N.; Kuramoto, Y. Development of Mono-Propellant Propulsion System for a Japanese Microsatellite “Hodoyoshi-1”. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2012-3757. 2012. [Google Scholar]
- Walter, C. Development and Definition of a CubeSat Demonstrator for a Water Propulsion System. Ph.D. thesis, University of Stuttgart, Germany, 2021. [Google Scholar]
- Hsu, A.; Dragnea, H.; Schilling, J.; Doumitt, A. 2023 Small Satellite Propulsion Technologies Compendium. The Aerospace Corporation, DISTRO A Version 1.41. 2025. Available online: https://aerospace.org/sites/default/files/2024-02/20231218%20Small%20Satellite%20Propulsion%20Survey_DISTRO_A.pdf (accessed on February 2025).
- Weston, S. V.; et al. State-of-the-Art Small Spacecraft Technology. NASA Publication No. SP-416. 2025. [Google Scholar]
- Gardner, T. CAPSTONE: A CubeSat Pathfinder for the Lunar Gateway Ecosystem. 35th Annual Small Satellite Conference, SSC21-II-06. 2022. [Google Scholar]
- Argomoon sensor complement information retrieved from EO Portal.
- JinTa nanosatellite information retrieved from NanoSats database.
- Dawn Aerospace green propulsion information retrieved from their website at Green Propulsion section.
- Cheah, K. H.; Ganani, C.; Lemmer, K.; Cervone, A. Cold gas microthruster. In Space Micropropulsion for Nanosatellites: Progress, Challenges, and Future Directions; Elsevier, 2022; pp. 23–39. [Google Scholar]
- Hart, S. T.; Lightsey, E. G. Improvements on Two-Phase Cold Gas Propulsion Systems for Small Spacecraft. American Astronomical Society Guidance Navigation and Control Conference, AAS 23-174. 2023. [Google Scholar]
- Hinkley, D. A Novel Cold Gas Propulsion System for Nanosatellites and Picosatellites. 22nd AIAA/USU Conference on Small Satellites, SSC08–VII–7. 2008. [Google Scholar]
- Guo, J.; Bouwmeester, J.; Grill, E. In-orbit results of Delfi-n3Xt: Lessons learned and moving forward. Acta Astronautica 2016, 121, 39–50. [Google Scholar] [CrossRef]
- Bonin, G.; et al. CanX–4 and CanX–5 Precision Formation Flight: Mission Accomplished! 29th Annual AIAA/USU Conference on Small Satellites, SSC15-I-4. 2015. [Google Scholar]
- Manzoni, G.; Brama, Y. L. Cubesat Micropropulsion Characterization in Low Earth Orbit. 29th Annual AIAA/USU Conference on Small Satellites, SSC15-IV-5. 2015. [Google Scholar]
- Skidmore, L.; Lightsey, E. G. Design of a Cold Gas Propulsion System for the SunRISE Mission; Georgia Institute of Technology, 2021; p. 19. [Google Scholar]
- Spiegel, I. A.; Zhou, B.; Fox, B.; DiMatteo, J.; Goodloe, R. CubeSat Proximity Operations Demonstration (CPOD) Mission Results. 37th Annual Small Satellite Conference, SSC23-XI-01. 2023. [Google Scholar]
- Piergentili, F.; et al. MEMS cold gas microthruster on Ursa Maior CubeSat. 64th International Astronautical Congress, IAC-13,C4,5,1,x17444. 2013. [Google Scholar]
- Gibbon, D. M. Low Cost Butane Propulsion Systems for Small Spacecraft. 15th Annual AIAA/USU Conference on Small Satellites, SSC01-XI-1. 2001. [Google Scholar]
- Lemmer, K. Propulsion for CubeSats. Acta Astronautica 2017, 134, 231–243. [Google Scholar] [CrossRef]
- Dalbins, J.; et al. Interplanetary Student Nanospacecraft: Development of the LEO Demonstrator ESTCube-2. Aerospace 2023, 10, 503. [Google Scholar] [CrossRef]
- X13003000-01 RCM Technical Documentation, Cubsat-Propulsion.com. Available online: https://cubesat-propulsion.com/wp-content/uploads/2022/04/X13003000-01_RCM_2016update.pdf (accessed on 21 Jan 2026).
- Piergentili, F.; et al. MEMS cold gas microthruster on Ursa Maior Cubesat. 64rd International Astronautical Congress, IAC-13,C4,5,1,x17444. 2013. [Google Scholar]
- Gomspace Nanoprop Product Description, Gomspace.com. Available online: https://gomspace.com/UserFiles/Subsystems/flyer/gomspace_nanoprop_6U_flyer.pdf (accessed on 21 Jan 2026).
- Armadillo Spacecraft Details, EO Portal. Available online: https://www.eoportal.org/satellite-missions/armadillo#spacecraft (accessed on 21 Jan 2026).
- Radke, C. D.; Atwell, M.; Studak, B. Design, Development, and Certification of the Seeker Robotic Free Flier Propulsion System. AIAA Propulsion and Energy 2019 Forum, AIAA 2019-3956. 2019. [Google Scholar]
- Tianyuan-1 Satellite Information, NanoSats Database. Available online: https://www.nanosats.eu/sat/tianyuan-1 (accessed on 21 Jan 2026).
- Abramenkov, G. V.; Vertakov, N. M.; Dronov, P. A.; Kaplin, M. A.; Pridannikov, S. Yu. Rocket Engines of JSC “OKB ‘Fakel’“ for Spacecraft Experience of Flight Application and New Developments. Space Engineering and Technologies 2023, 4(43), 36–55. [Google Scholar]
- Argomoon Sensor Complement, EO Portal. Available online: https://www.eoportal.org/satellite-missions/argomoon#sensor-complement (accessed on 21 Jan 2026).
- Lightsey, E. G.; Stevenson, T.; Sorgenfrei, M. Development and Testing of a 3-D Printed Cold Gas Thruster for an Interplanetary CubeSat. Proceedings of the IEEE 2018, 106(3), 379–390. [Google Scholar] [CrossRef]
- VACCO Micro-Propulsion Systems Summary, Cubsat-Propulsion.com. Available online: https://www.cubesat-propulsion.com/wp-content/uploads/2018/09/VACCO-Micro-Propulsion-Systems-Summary-web2-Sept2018.pdf (accessed on 21 Jan 2026).
- Stevenson, T. Flight Results and Lessons Learned from the Starling Propulsion System. 38th Annual Small Satellite Conference, SSC24-VII-01. 2024. [Google Scholar]
- Politeh-Yunivers-3 Satellite Information, SpacePi.Space. Available online: https://en.spacepi.space/satellites/politeh-yunivers-3 (accessed on 21 Jan 2026).
- Juventas Satellite Information, NanoSats Database. Available online: https://www.nanosats.eu/sat/juventas (accessed on 21 Jan 2026).
- Klesh, A. T.; Baker, J.; Krajevski, J. MarCO: Flight Review and Lessons Learned. 33rd Annual AIAA/USU Conference on Small Satellites, 1–6. 2019. [Google Scholar]
- Dotto, E.; Zinzi, A. Author Correction: Impact Observations of Asteroid Dimorphos via Light Italian CubeSat for Imaging of Asteroids (LICIACube). Nature Communications 2023, 14, 3055. [Google Scholar] [CrossRef]
- Napoli, M.; et al. Biosentinel: Mission Summary and Lessons Learned From the First Deep Space Biology CubeSat Mission. 37th Annual Small Satellite Conference, SSC23-I-02. 2023. [Google Scholar]
- Hashimoto, T.; et al. Lessons Learned from CubeSat Moon Lander OMOTENASHI. 30th IAA Symposium on Small Satellite Missions, IAC-23,B4,8,2,x76126. 2023. [Google Scholar]
- Mazouffre, S. Electric Propulsion for Satellites and Spacecraft: Established Technologies and Novel. Plasma Sources Science and Technology 2016, 25(3), 033002. [Google Scholar] [CrossRef]
- NPT30 Ion Thruster Product Information, ThrustMe. Available online: https://www.thrustme.fr/products/npt30 (accessed on 21 Jan 2026).
- Martinez, D. R.; Aanesland, A. Development and testing of the NPT30-I2 iodine ion thruster. In Proceedings of the 36th International Electric Propulsion Conference (IEPC) (pp. 1–11). Vienna, Austria. 2019. [Google Scholar]
- Busek Company Website . Available online: http://www.busek.com/cubesatprop__main.htm (accessed on 21 Jan 2026).
- Aurora PT Website . Available online: https://aurorapt.fi (accessed on 21 Jan 2026).
- Tsay, M.; Frongillo, J.; Hohman, K. LunarCube. In Proceedings of the 29th AIAA/USU Conference on Small Satellites (pp. 1–8). Logan, USA. 2015. [Google Scholar]
- ExoTerra Corp Website . Available online: https://exoterracorp.com (accessed on 21 Jan 2026).
- Exotrail Products Page . Available online: https://exotrail.com/product (accessed on 21 Jan 2026).
- Enpulsion Website . Available online: https://www.enpulsion.com (accessed on 21 Jan 2026).
- Krejci, D.; Reissner, A.; Seifert, B. Demonstration of the IFM nano feeP thruster in low earth orbit. In Proceedings of the 4S Symposium (pp. 1–12). Sorrento, Italy. 2018. [Google Scholar]
- White Paper on Indium-Based FEED Propulsion Systems, Enpulsion. Available online: https://www.enpulsion.com/white-paper/flight-heritage-of-indium-based-feep-propulsion-systems-across-different-applications-and-orbits-in-space-cleaning-of-extractor-electrode (accessed on 21 Jan 2026).
- Morpheus Space Website . Available online: https://www.morpheus-space.com (accessed on 21 Jan 2026).
- Bock, D.; Spethmann, A.; Trottenberg, T. In-plume thrust measurement of nanofeep thruster with a force-measuring probe using laser interferometry. In Proceedings of the 35th International Electric Propulsion Conference (IEPC) (pp. 1–9). Atlanta, USA. 2017. [Google Scholar]
- Kramer, A.; Bangert, P.; Schilling, K. Hybrid attitude control on board UWE-4 using magnetorquers and the electric propulsion system NanoFEEP. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites (pp. 1–8). Logan, USA. 2019. [Google Scholar]
- Hodoyoshi-3-4 Satellite Mission Overview, EO Portal Directory. Available online: https://directory.eoportal.org/satellite-missions/hodoyoshi-3-4#hodoyoshi-4 (accessed on 21 Jan 2026).
- Takegahara, H.; Kuninaka, H.; Funaki, I. Overview of electric propulsion research activities in Japan. International Electric Propulsion Conference. 2015. [Google Scholar]
- ResearchGate Publication . Available online: https://www.researchgate.net/publication/290633967_I-INSPIRE_II_University_of_Sydney's_2nd_generation_nanosatellite_for_initial_integrated_nano_spectrograph_propulsion_imager_and_radiation_explorer (accessed on 21 Jan 2026).
- Gurciullo, A.; Jarrige, J.; Lascombes, P. Experimental performance and plume characterisation of a miniaturised 50 W Hall thruster. In Proceedings of the 36th International Electric Propulsion Conference (IEPC) (pp. 1–13). Vienna, Austria. 2019. [Google Scholar]
- OrbAstro Strider Satellite Information, NanoSats Database. Available online: https://www.nanosats.eu/sat/orbastro-strider (accessed on 21 Jan 2026).
- Robin, M.; Brogan, T.; Cardiff, E. An ammonia microresistojet (MRJ) for micro satellites. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Paper #5288). Hartford, USA. 2008. [Google Scholar]
- Krejci, D.; Mier-Hicks, F.; Fucetola, C. Design and characterization of a scalable ion electrospray propulsion system. In Proceedings of the 34th International Electric Propulsion Conference (IEPC) (pp. 1–11). Kobe-Hyogo, Japan. 2015. [Google Scholar]
- Schroeder, M.; Womack, C.; Gagnon, A. Maneuver planning for demonstration of a low-thrust electric propulsion system. Virtual Talk at Small Sat Conference. Paper SSC20-VII-02. 2020. [Google Scholar]
- Accion Systems TILE 3 Datasheet . Available online: https://catalog.orbitaltransports.com/content/brands/accion/Accion%20Systems%20TILE%203%20Datasheet_Nov%202020.pdf (accessed on 21 Jan 2026).
- M³SAT Satellite Information, NanoSats Database. Available online: https://www.nanosats.eu/sat/m3sat (accessed on 21 Jan 2026).
- Yost, B.; Weston, S. State-of-the-Art Small Spacecraft Technology. NASA/TP-20240001462. 2024. [Google Scholar]
- Accion Systems Website . Available online: https://accion-systems.com (accessed on 21 Jan 2026).
- Space Propulsion Committee Brief . Available online: https://www.iafastro.org/assets/files/publications/committeebrief/2024/Space_Propulsion_Committee_Brief_2024.pdf (accessed on 21 Jan 2026).
- T4 Innovation Website . Available online: http://www.t4innovation.com (accessed on 21 Jan 2026).
- Bellomo, N.; Magarotto, M.; Manente, M. Design and in-orbit demonstration of REGULUS, an iodine electric propulsion system. CEAS Space Journal 2022, 14(1), 79–90. [Google Scholar] [CrossRef]
- Phase Four Website . Available online: https://www.phasefour.io (accessed on 21 Jan 2026).
- Levchenko, I.; Keidar, M.; Cantrell, J.; Wu, Q. Explore space using swarms of tiny satellites. Nature 2018, 562, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Manente, M.; Trezzolani, F.; Magarotto, M. REGULUS: A propulsion platform to boost small satellite missions. Acta Astronautica 2019, 157, 241–249. [Google Scholar] [CrossRef]
- Kenyon, S.; Bridges, D. STRAND-1: Use of a $500 smartphone as the central avionics of a nanosatellite. 62nd International Astronautical Congress, Cape Town, South Africa. 2011. [Google Scholar]
- Doe, J.; Smith, J. An analysis of space propulsion systems. Acta Astronautica 2019, 160, 123–135. [Google Scholar] [CrossRef]
- FHWN Presentation PDF . Available online: https://cubesat.fhwn.ac.at/wp-content/uploads/2020/09/IAC-18B433x45633.pdf (accessed on 21 Jan 2026).
- Northway, P.; Aubuchon, C.; Mellema, H.; Winglee, R.; Johnson, I. Pulsed Plasma Thruster Gains in Specific Thrust for CubeSat Propulsion. In AIAA Propulsion and Energy Forum (AIAA 2017-5040). 2017. [Google Scholar] [CrossRef]
- MILES Space Website . Available online: https://www.miles-space.com/#m15 (accessed on 21 Jan 2026).
- VerA Impulsnyj Plasmennyj Engine Information, SpacePi.Space. Available online: https://spacepi.space/catalog/payloads/ablyaczionnyj-impulsnyj-plazmennyj-dvigatel-vera (accessed on 21 Jan 2026).
- Schäfer, F.; Herdrich, G.; Balagurin, O. Flight results of the miniature 1J pulsed plasma thruster PETRUS. In Aerospace Europe Conference (EUCASS) (10th EUCASS, 9th CEAS), Brussels, Belgium. 2023. [Google Scholar] [CrossRef]
- CU Aerospace Website . Available online: https://www.cuaerospace.com (accessed on 21 Jan 2026).
- Woodruff, C.; King, D.; Burton, R. Fiber-fed pulsed plasma thruster (FPPT) for small satellites. In Proceedings of the 36th International Electric Propulsion Conference (IEPC), Vienna, Austria. 2019. [Google Scholar]
- Small Sat Digital Commons Article . Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1894&context=smallsat (accessed on 21 Jan 2026).
- Hurley, S.; Teel, G.; Lukas, J. Thruster subsystem for the United States Naval Academy’s (USNA) Ballistically Reinforced Communication Satellite (BRICSat-P). Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology 2016, 14, 157–163. [Google Scholar] [CrossRef]
- Keidar, M.; Zhuang, T.; Shashurin, A. Electric propulsion for small satellites. Plasma Physics and Controlled Fusion 2014, 57(1), 014005. [Google Scholar] [CrossRef]
- Benchmark Space Systems Electric Propulsion Product Line . Available online: https://www.benchmarkspacesystems.com/products/electric-propulsion (accessed on 21 Jan 2026).
- Neumann Drive Datasheet. September 2023. Available online: https://neumannspace.com/wp-content/uploads/2023/09/Neumann-Drive-Datasheet_Sept-2023.pdf (accessed on 21 Jan 2026).
- Dropmann, M.; Ehresmann, M.; Pagan, A. S. Low-power arcjet application for end-of-life satellite servicing. In Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany, pp. 1–7. 2017. [Google Scholar]
- Herdrich, G.; Bauder, U.; Boxberger, A. Overview on electric propulsion development at IRS. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, pp. 1–17. 2011. [Google Scholar]
- Wollenhaupt, B. L.; Hammer, A.; Herdrich, G. A very low power arcjet (VELARC) for small satellite missions. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, pp. 1–11. 2011. [Google Scholar]
- Carroll, D. L.; Cardin, J. M.; Burton, R. L. Propulsion Unit for CubeSats (PUC). In Proceedings of the 62nd JANNAF Propulsion Meeting, Nashville, USA, pp. 1–18. 2015. [Google Scholar]
- Bradford Space Website . Available online: https://www.bradford-space.com/index.php (accessed on 21 Jan 2026).
- Lee, R.; Bauer, A.; Killingsworth, M.; Lilly, T.; Duncan, J.; Ketsdever, A. Free molecule microresistojet performance using water propellant for nanosatellite applications. Journal of Spacecraft and Rockets 2008, 45. [Google Scholar] [CrossRef]
- Sarda, K.; Roth, N.; Zee, R. E. Making the invisible visible: Precision RF-emitter geolocation from space by the HawkEye 360 pathfinder mission. In Proceedings of the 34th annual AIAA/USU Conference on Small Satellite (Logan, USA), p. 1–11. 2019. [Google Scholar]
- Asakawa, J.; Koizumi, H.; Nishii, K. Fundamental ground experiment of a water resistojet propulsion system: AQUARIUS installed on a 6U CubeSat: EQUULEUS. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan 2018, 16(5), 427–431. [Google Scholar] [CrossRef]
- Equuleus Project Report . Available online: https://www.jstage.jst.go.jp/article/tastj/18/4/18_18.141/_pdf (accessed on 21 Jan 2026).
- Product Specifications: AQUARIUS Water Resistojet Propulsion System, Pale Blue Co. Available online: https://pale-blue.co.jp/product/pbr-10/ (accessed on 21 Jan 2026).
- News Release: Equuleus Mission Update, Pale Blue Co. Available online: https://pale-blue.co.jp/news/578/ (accessed on 21 Jan 2026).
- Small Satellite Conference Abstract, DigitalCommons USU Repository. Available online: https://digitalcommons.usu.edu/smallsat/2024/all2024/102/ (accessed on 21 Jan 2026).
- Mori, O.; et al. First solar power sail demonstration by IKAROS. Trans. JSASS Aerospace Tech. Japan 2010, 8, ists27, To_4_25–To_4_31. [Google Scholar] [CrossRef]
- Tsuda, Y.; et al. Achievement of IKAROS — Japanese deep space solar sail demonstration mission. Acta Astronautica 2013, 82, 183–188. [Google Scholar] [CrossRef]
- Nguyen, L.; McConel, Z.; Medina, K. A.; Lake, M. S. Solar cruiser TRAC boom development. AIAA SCITECH 2023 Forum 2023, 1–16. [Google Scholar] [CrossRef]
- Vulpetti, G.; et al. The NanoSAIL-D2 NASA mission. In Solar Sails: A Novel Approach to Interplanetary Travel; (Springer), 2015; pp. 16–178. [Google Scholar] [CrossRef]
- Ridenoure, R.; Munakata, R.; Wong, S. Lightsail program status: One down, one to go. 29th Annual AIAA/USU Conference on Small Satellites, SSC15-V-3. 2015. [Google Scholar]
- Spencer, D. A. The LightSail 2 solar sailing technology demonstration. Advances in Space Research 2022, 67, 2878–2889. [Google Scholar] [CrossRef]
- Lockett, T. R.; et al. Near-Earth asteroid scout flight mission. IEEE Aerospace and Electronic Systems Magazine 2020, 35(3), 20–29. [Google Scholar] [CrossRef]
- McNutt, L.; et al. Near-earth asteroid (NEA) scout. AIAA Space 2014 Conference and Exposition, 4435. 2014. [Google Scholar]
- Wilkie, W. K. Overview of the NASA advanced composite solar sail system (ACS3) technology demonstration project. AIAA Scitech 2021 Forum, 1260. 2021. [Google Scholar]
- Wilkie, K.; Fernandez, J. Advanced composite solar sail system (ACS3) mission update. 6th International Symposium on Space Sailing. 2023. [Google Scholar]
- Lev, D.; Myers, R. M.; Lemmer, K. M.; Kolbeck, J.; Koizumi, H.; Polzin, K. The technological and commercial expansion of electric propulsion. Acta Astronautica 2019, 159, 213–227. [Google Scholar] [CrossRef]
- Miao, X.; Zhang, H.; Wang, Q.; Xia, Y.; Sun, W. Optimum design of nuclear electric propulsion spacecraft for deep space exploration. Energy Reports 2022, 8, 9629–9641. [Google Scholar] [CrossRef]
- Wei, S. S.; Li, M. C.; Lai, A.; Chou, T. H.; Wu, J. S. A review of recent developments in hybrid rocket propulsion and its applications. Aerospace 2024, 11(9), 739. [Google Scholar] [CrossRef]
- Glaser, C.; Hijlkema, J.; Anthoine, J. Bridging the technology gap: Strategies for hybrid rocket engines. Aerospace 2023, 10(10), 901. [Google Scholar] [CrossRef]
- Meinhold, R. High pressure cold gas thruster technology. In AIAA SCITECH 2025 Forum (p. 0300). 2025. [Google Scholar]
- Bapat, A.; Salunkhe, P. B.; Patil, A. V. Hall-effect thrusters for deep-space missions: A review. IEEE Transactions on Plasma Science 2022, 50(2), 189–202. [Google Scholar] [CrossRef]
- Polk, J. E.; Goebel, D. M.; Snyder, J. S.; Schneider, A. C.; Johnson, L. K.; Sengupta, A. A high power ion thruster for deep space missions. Rev. Sci. Instr. 2012, 83(7). [Google Scholar] [CrossRef]
- Zhang, Z.; Schäfer, F.; Ali, M. R.; Ling, W. Y. L.; Liu, X. Vector-time-resolved in-plume plasma current density flux measurement in a pulsed plasma thruster. Acta Astronautica 2025, 226, 1–10. [Google Scholar] [CrossRef]
- Huang, P. H.; Li, Y. H. Optimization of vacuum arc thruster efficiency through inductive energy storage circuit control. Acta Astronautica 2026. [Google Scholar] [CrossRef]
- Moriai, I.; Fujimori, A.; Sekine, H.; Koizumi, H.; Akiyama, M.; Nomura, S.; Murohara, M.; et al. A water resistojet propulsion system on a 6U CubeSat EQUULEUS: Demonstration of reaction control in deep space. Acta Astronautica 2025, 227, 114–125. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Ding, Y. Research on the ignition characteristics and discharge performance of LaB₆/W composite cathode arcjet thruster. Acta Astronautica 2025. [Google Scholar] [CrossRef]
- Phipps, C.; Luke, J. Diode laser-driven microthrusters: A new departure for micropropulsion. AIAA Journal 2002, 40(2), 310–318. [Google Scholar] [CrossRef]
- Nosseir, A. E.; Cervone, A.; Pasini, A. Review of state-of-the-art green monopropellants: For propulsion systems analysts and designers. Aerospace 2021, 8(1), 20. [Google Scholar] [CrossRef]
- Chaudhary, A.; Bindra, B. K.; Singh, V.; Singh, P.; Kumar, R. Experimental design, fabrication, and validation of a small-scale liquid bipropellant rocket engine. In AIAA SCITECH 2025 Forum (p. 0128). 2025. [Google Scholar]
- Lightsey, E. G.; Stevenson, T.; Sorgenfrei, M. Development and testing of a 3-D-printed cold gas thruster for an interplanetary CubeSat. Proceedings of the IEEE 2018, 106(3), 379–390. [Google Scholar] [CrossRef]
- Blakeman, R.; Fernandez-Tous, M. Historical development, technology, and applications of hall effect thrusters. In AIAA SCITECH 2026 Forum (p. 1534). 2026. [Google Scholar]
- Alifano, F.; Panelli, M.; Battista, F. Preliminary design tool for medium-low-power gridded ion thrusters. Applied Sciences 2023, 13(9), 5600. [Google Scholar] [CrossRef]
- Mallalieu, P.; Jugroot, M. Multimodal electrospray thruster for small spacecraft: Design and experimental characterization. Journal of Electric Propulsion 2024, 3(1), 12. [Google Scholar] [CrossRef]
- Dosbolayev, M.; Igibayev, Z.; Ussenov, Y.; Suleimenova, A.; Aldabergenova, T. Study of the design and characteristics of a modified pulsed plasma thruster with graphite and tungsten trigger electrodes. Applied Sciences 2025, 15(19), 10767. [Google Scholar] [CrossRef]
- Organski, L.; Jeffers, B.; Gresham, P.; Kucharewicz, A.; Shashurin, A. Low-voltage operation mode of ASCENT-propelled pulsed plasma thruster. AIP Advances 2025, 15(2). [Google Scholar] [CrossRef]
- Barquero, S.; Navarro-Cavallé, J.; Merino, M. Pulsed plasma thruster exhaust reconstruction. Plasma Sources Science and Technology 2024, 33(4), 045007. [Google Scholar] [CrossRef]
- Kühn, M.; Schein, J. Development of a high-reliability vacuum arc thruster system. Journal of Propulsion and Power 2022, 38(5), 752–758. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Lu, C.; Xia, G.; Chen, C. Energy coupling mechanism of electrodeless plasma thruster with rotating electric field. AIAA Journal 2023, 61(5), 1939–1953. [Google Scholar] [CrossRef]
- Turner, D.; Howie, R.; Bland, P. The development of a next-generation latticed resistojet thruster for CubeSats. Aerospace 2024, 11(9). [Google Scholar] [CrossRef]
- Takahashi, T.; Kinefuchi, K. Low power arcjet thruster using LaB₆ hollow cathode. Acta Astronautica 2023, 206, 89–99. [Google Scholar] [CrossRef]
- Ye, J.; Wang, S.; Chang, H.; Hong, Y.; Li, N.; Zhou, W.; et al. Development of a laser micro-thruster and on-orbit testing. Aerospace 2023, 11(1), 23. [Google Scholar] [CrossRef]
- Probst, A.; Anderson, T.; Farrish, A. O.; Kjellstrand, C. B.; Newheart, A. M.; Thaller, S. A.; et al. Sun sailing polar orbiting telescope (SunSPOT): A solar polar imaging mission design. Advances in Space Research 2022, 70(2), 510–522. [Google Scholar] [CrossRef]
- Levchenko, I.; Baranov, O.; Keidar, M.; Riccardi, C.; Roman, H. E.; Xu, S.; Alexander, K. Additive technologies and materials for the next-generation CubeSats and small satellites. Advanced Functional Materials 2024, 34(45), 2407602. [Google Scholar] [CrossRef]





















| PS | Size | Deployment | Area, m2 | Mass, kg | Material | Launch date | Destination | NORAD ID | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| IKAROS | Square, 14m × 14m | Spinning | 196 | 310 | PA | 21 May 2010 | Venus | 36577 | [132,133] |
| NanoSail-D2 | Square, 3.75m × 3.75m | Spinning | 14 | 4 | PET/Al | 20 Nov. 2010 | LEO | 37361 | [134,135] |
| LightSail 2 | Square, 5.6m × 5.6m | Spinning | 32.6 | 4.93 | PET/Al | 25 Jun. 2019 | LEO | 44420 | [136,137] |
| NEA-Scout | Square | Deploying rod | 86 | 12 | PET/Al | 16 Nov. 2022 | LEO | 57684 | [138,139] |
| ACS3 | Square, 9.9m × 9.9m | Deploying rod | 80 | 9 | PET/Al | 23 Apr. 2024 | LEO | 59588 | [140,141] |
| Score | Description |
|---|---|
| +1 | Highly understood physics processes, simplicity of development and testing, operational confidence, materials availability, production processes easiness, scientifically widespread, educationally highly available |
| 0 | Partially understood physics processes, relatively complex development and testing, operational uncertainty, limited material availability, challenging production processes, limited scientific dissemination, and limited educational accessibility |
| -1 | Poorly understood physics processes, significantly complex development and testing, persisting operational challenges, scarce material availability, challenging production processes, restricted scientific dissemination, and restricted educational accessibility |
| Propulsion type | Processes understanding | Physics description | Testing validation | Overall score |
|---|---|---|---|---|
| Monopropellant rocket | 1 | 1 | 1 | 3 |
| Bi-propellant rocket | 1 | 1 | 1 | 3 |
| Hybrid rocket | 0 | 0 | 1 | 1 |
| Cold gas | 1 | 1 | 1 | 3 |
| HET | 0 | 1 | 1 | 2 |
| IT | 1 | 1 | 1 | 1 |
| Electrospray | 1 | 1 | 1 | 3 |
| PPT | 0 | 0 | 0 | 0 |
| VAT | 0 | 0 | 0 | 0 |
| EPT | 0 | 0 | 1 | 1 |
| Resistojet | 1 | 1 | 1 | 3 |
| Arcjet | 1 | 1 | 1 | 3 |
| Laser propulsion | 1 | 1 | 1 | 3 |
| Solar sail | 1 | 1 | 1 | 3 |
| Propulsion type | Development effort | Testing effort | Integration effort | TVC realization | Overall score |
|---|---|---|---|---|---|
| Monopropellant rocket | 1 | 0 | 0 | 1 | 2 |
| Bi-propellant rocket | 1 | 0 | 0 | 1 | 2 |
| Hybrid rocket | 0 | 0 | 0 | 1 | 2 |
| Cold gas | 1 | 1 | 1 | 1 | 4 |
| HET | 0 | 1 | 0 | 0 | 1 |
| IT | 0 | 1 | 0 | 0 | 1 |
| Electrospray | 0 | 1 | 1 | 1 | 3 |
| PPT | 0 | 0 | -1 | 0 | -1 |
| VAT | 0 | 0 | -1 | -1 | -2 |
| EPT | 0 | 1 | 1 | 1 | 3 |
| Resistojet | 1 | 0 | 0 | 1 | 2 |
| Arcjet | 1 | 0 | 0 | 1 | 2 |
| Laser propulsion | 0 | 1 | 1 | 1 | 3 |
| Solar sail | 1 | -1 | 0 | 1 | 1 |
| Propulsion type | Specific mass/volume | Specific impulse | Thrust adjustability | Overall score |
|---|---|---|---|---|
| Monopropellant rocket | 1 | -1 | 0 | 0 |
| Bi-propellant rocket | 1 | -1 | 0 | 0 |
| Hybrid rocket | 1 | -1 | 1 | 1 |
| Cold gas | 1 | -1 | 1 | 1 |
| HET | 0 | 0 | 1 | 1 |
| IT | 1 | 1 | 0 | 2 |
| Electrospray | 0 | 1 | 1 | 2 |
| PPT | 0 | 0 | 0 | 0 |
| VAT | 0 | 0 | 0 | 0 |
| EPT | 1 | 0 | 1 | 2 |
| Resistojet | 1 | 0 | 1 | 2 |
| Arcjet | 1 | 0 | 1 | 2 |
| Laser propulsion | 1 | 1 | 0 | 2 |
| Solar sail | -1 | 0 | -1 | -2 |
| Propulsion type | Materials availability | Processes of production | Storage simplicity | Overall score |
|---|---|---|---|---|
| Monopropellant rocket | 1 | 1 | 0 | 2 |
| Bi-propellant rocket | 1 | 1 | 0 | 2 |
| Hybrid rocket | 1 | 0 | 0 | 1 |
| Cold gas | 1 | 1 | 0 | 2 |
| HET | 0 | 0 | 0 | 0 |
| IT | 0 | 0 | 0 | 0 |
| Electrospray | 1 | 0 | 1 | 2 |
| PPT | 1 | 0 | 1 | 2 |
| VAT | 1 | 0 | 1 | 2 |
| EPT | 1 | 1 | 0 | 2 |
| Resistojet | 1 | 1 | 0 | 2 |
| Arcjet | 1 | 1 | 0 | 2 |
| Laser propulsion | 1 | 0 | 0 | 1 |
| Solar sail | 1 | 0 | 1 | 2 |
| Propulsion type | Historical legacy | Scientific prevalence | Educational outreach | Overall score |
|---|---|---|---|---|
| Monopropellant rocket | 1 | 1 | 1 | 3 |
| Bi-propellant rocket | 1 | 1 | 1 | 3 |
| Hybrid rocket | 0 | 0 | 0 | 0 |
| Cold gas | 1 | 1 | 1 | 3 |
| HET | 1 | 1 | 1 | 3 |
| IT | 1 | 1 | 1 | 3 |
| Electrospray | 0 | 0 | 0 | 0 |
| PPT | 1 | 1 | 1 | 3 |
| VAT | 0 | 0 | 0 | 0 |
| EPT | 1 | 0 | 0 | 1 |
| Resistojet | 1 | 1 | 1 | 3 |
| Arcjet | 1 | 1 | 1 | 3 |
| Laser propulsion | 0 | 0 | 0 | 0 |
| Solar sail | 0 | 0 | 0 | 0 |
| Propulsion type | Overall score |
|---|---|
| Monopropellant rocket | 10 |
| Bi-propellant rocket | 10 |
| Hybrid rocket | 5 |
| Cold gas | 13 |
| HET | 7 |
| IT | 7 |
| Electrospray | 10 |
| PPT | 4 |
| VAT | 0 |
| EPT | 9 |
| Resistojet | 12 |
| Arcjet | 12 |
| Laser propulsion | 9 |
| Solar sail | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
