Mechano-sorptive phenomena (MSP) refer to the coupled mechanical response of polymers under simultaneous mechanical stress and fluid sorption. The most researched MSP are environmental stress cracking (ESC) and mechano-sorptive creep (MSC). ESC initiates at regions of localized stress and solvent sorption, presenting as brittle fracture, while MSC is characterized by large, time-dependent, and partially recoverable creep associated with transient bulk sorption. ESC experiments can however also result in significant plastic deformation, in which case the term environmental stress yielding (ESY) has been used. Similarly, MSC can evolve into tertiary creep followed by rupture, in which case the phenomenon is termed mechano-sorptive creep rupture (MSCR). Both behaviors originate from solvent diffusion into the amorphous phase leading to disruption of non-covalent interactions between polymer chains. This review bridges seemingly disconnected research to illustrate that ESC and MSC represent extremes on a continuum of MSP, rather than disparate phenomena. We identify the principles of polymer thermodynamics and experimental methods necessary to separate polymer deformation under MSC into reversible stress-induced swelling and irreversible non-equilibrium deformation. We propose that a better understanding of these phenomena is necessary for a variety of applications including biomimetic materials that mimic the mechanical adaptability of marine organisms.