Submitted:
21 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Objectives
3. Materials and Methods
4. Results
4.1. Epidemiology
4.2. Risk factors
4.3. Histopathology
4.4. Diagnosis
4.5. Resectability and surgery
4.6. Preoperative biliary drainage
4.7. Neoadjuvant treatment
4.8. Adjuvant treatment
4.9. MIS versus open approach
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
| MIS | minimally invasive surgery |
| TGFb | transforming growth factor-b |
| IGFs | insulin-like growth factors |
| LTA | lipo-teichoic acid |
| SCFAs | short-chain fatty acids |
| PanIN | intraepithelial neoplasia |
| IPMN | intraductal papillary mucinous neoplasms |
| MCN | mucinous cystic neoplasms |
| FAMMM | familial atypical multiple mole melanoma syndrome |
| CT | computed-tomograhy |
| MRI | magnetic resonance imaging |
| EUS | magnetic resonance imaging |
| FNA | fine needle aspiration |
| PET-CT | positron emission computed tomography |
| SMV | superior mesenteric vein |
| PV | portal vein |
| SMA | superior mesenteric artery |
| CHA | common hepatic artery |
| CA | celiac artery |
| FOLFIRINOX | folinic acid, fluorouracil (5-FU), irinotecan, and oxaliplatin |
| 5-FU-LV | 5-fluorouracil-leucovorin |
References
- Ferlay, J.; et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef]
- Maisonneuve, P. Epidemiology and burden of pancreatic cancer. Press. Médicale 2019, 48, e113–e123. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2O18 68, 394–424. [CrossRef]
- Klein, A. P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef]
- Goral, V. Pancreatic Cancer: Pathogenesis and Diagnosis. Asian Pac. J. Cancer Prev. 2015, 16, 5619–5624. [Google Scholar] [CrossRef]
- Midha, S.; Chawla, S.; Garg, P. K. Modifiable and non-modifiable risk factors for pancreatic cancer: A review. Cancer Lett. 381, 269–277. [CrossRef]
- Ciccone, M.; et al. Feasibility and effectiveness of a disease and care management model in the primary health care system for patients with heart failure and diabetes (Project Leonardo). Vasc. Heal. Risk Manag. 2010, 6, 297–305. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Gao, P. ABO Blood Group and Diabetes Mellitus Influence the Risk for Pancreatic Cancer in a Population from China. Méd. Sci. Monit.: Int. Méd. J. Exp. Clin. Res. 2018, 24, 9392–9398. [Google Scholar] [CrossRef] [PubMed]
- Wood, L. D.; Yurgelun, M. B.; Goggins, M. G. Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology 2019, 156, 2041–2055. [Google Scholar] [CrossRef] [PubMed]
- Hruban, R. H.; Canto, M. I.; Goggins, M.; Schulick, R.; Klein, A. P. Update on Familial Pancreatic Cancer. Adv. Surg. 2010, 44, 293–311. [Google Scholar] [CrossRef]
- Becker, A. E.; Hernandez, Y. G.; Frucht, H.; Lucas, A. L. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J. Gastroenterol. 2014, 20, 11182–11198. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T. P. Demographics, Epidemiology, and Inheritance of Pancreatic Ductal Adenocarcinoma. Semin. Oncol. 2015, 42, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Wolpin, B. M.; et al. Pancreatic Cancer Risk and ABO Blood Group Alleles: Results from the Pancreatic Cancer Cohort Consortium. Cancer Res. 2010, 70, 1015–1023. [Google Scholar] [CrossRef]
- Petersen, G. M.; et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 2010, 42, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; et al. Diabetes and pancreatic cancer: Exploring the two-way traffic. World J. Gastroenterol. 2021, 27, 4939–4962. [Google Scholar] [CrossRef]
- Gardner, T. B.; et al. The Effect of Neoadjuvant Chemoradiation on Pancreatic Cancer-Associated Diabetes Mellitus. Pancreas. 2O14 43, 1018–1021. [CrossRef]
- Bosetti, C.; et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann. Oncol. 2014, 25, 2065–2072. [Google Scholar] [CrossRef]
- Huang, B. Z.; et al. New-Onset Diabetes, Longitudinal Trends in Metabolic Markers, and Risk of Pancreatic Cancer in a Heterogeneous Population. Clin. Gastroenterol. Hepatol. 2020, 18, 1812–1821.e7. [Google Scholar] [CrossRef]
- Mizrahi, J. D.; Surana, R.; Valle, J. W.; Shroff, R. T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef]
- Rawla, P.; Thandra, K. C.; Sunkara, T. Pancreatic cancer and obesity: epidemiology, mechanism, and preventive strategies. Clin. J. Gastroenterol. 2019, 12, 285–291. [Google Scholar] [CrossRef]
- Zhang, A. M. Y.; et al. Endogenous Hyperinsulinemia Contributes to Pancreatic Cancer Development. Cell Metab. 2019, 30, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Kim, N. H.; Chang, Y.; Lee, S. R.; Ryu, S.; Kim, H. J. Glycemic Status, Insulin Resistance, and Risk of Pancreatic Cancer Mortality in Individuals With and Without Diabetes. Am. J. Gastroenterol. 2020, 115, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Trajkovic-Arsic, M.; Kalideris, E.; Siveke, J. T. The role of insulin and IGF system in pancreatic cancer. J. Mol. Endocrinol. 2013, 50, R67–R74. [Google Scholar] [CrossRef] [PubMed]
- Burton, D. G. A.; Faragher, R. G. A. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 2018, 19, 447–459. [Google Scholar] [CrossRef]
- Menini, S.; et al. The advanced glycation end-product Nϵ-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J. Pathol. 2018, 245, 197–208. [Google Scholar] [CrossRef]
- Velazquez-Torres, G.; et al. Diabetes mellitus type 2 drives metabolic reprogramming to promote pancreatic cancer growth. Gastroenterol. Rep. 2020, 8, 261–276. [Google Scholar] [CrossRef]
- Takahashi, M.; et al. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 2018, 109, 3013–3023. [Google Scholar] [CrossRef]
- Jeon, C. Y.; et al. The Association of Recently Diagnosed Diabetes and Long-term Diabetes With Survival in Pancreatic Cancer Patients. Pancreas 2018, 47, 314–320. [Google Scholar] [CrossRef]
- Hank, T.; et al. Diabetes mellitus is associated with unfavorable pathologic features, increased postoperative mortality, and worse long-term survival in resected pancreatic cancer. Pancreatology 2020, 20, 125–131. [Google Scholar] [CrossRef]
- Lv, X.; Qiao, W.; Leng, Y.; Wu, L.; Zhou, Y. Impact of diabetes mellitus on clinical outcomes of pancreatic cancer after surgical resection: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0171370. [Google Scholar] [CrossRef]
- Bitterman, D. S.; et al. Impact of Diabetes and Insulin Use on Prognosis in Patients With Resected Pancreatic Cancer: An Ancillary Analysis of NRG Oncology RTOG 9704. Int. J. Radiat. Oncol.Biol.Phys. 2021, 109, 201–211. [Google Scholar] [CrossRef]
- Hart, P. A.; et al. Impact of Diabetes Mellitus on Clinical Outcomes in Patients Undergoing Surgical Resection for Pancreatic Cancer: A Retrospective, Cohort Study. Am. J. Gastroenterol. 2014, 109, 1484–1492. [Google Scholar] [CrossRef]
- Beg, M. S.; Dwivedi, A. K.; Ahmad, S. A.; Ali, S.; Olowokure, O. Impact of Diabetes Mellitus on the Outcome of Pancreatic Cancer. PLoS ONE 2014, 9, e98511. [Google Scholar] [CrossRef]
- Raghavan, S. R.; Ballehaninna, U. K.; Chamberlain, R. S. The Impact of Perioperative Blood Glucose Levels on Pancreatic Cancer Prognosis and Surgical Outcomes. Pancreas 2013, 42, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Raza, M. H.; et al. Microbiota in cancer development and treatment. J. Cancer Res. Clin. Oncol. 2019, 145, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Bai, C.; Brown, T. D.; Hood, L. E.; Tian, Q. Human Gut Microbiota and Gastrointestinal Cancer. Genom., Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.-Y.; et al. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol. Cancer 2019, 18, 97. [Google Scholar] [CrossRef]
- Gensollen, T.; Iyer, S. S.; Kasper, D. L.; Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef]
- Palm, N. W.; de Zoete, M. R.; Flavell, R. A. Immune–microbiota interactions in health and disease. Clin. Immunol. 2015, 159, 122–127. [Google Scholar] [CrossRef]
- Brown, D. G.; et al. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016, 4, 11. [Google Scholar] [CrossRef]
- Hold, G. L.; et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J. Gastroenterol. 2014, 20, 1192–1210. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, T.; et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochem. Biophys. Res. Commun. 2018, 506, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Dickson, I. Microbiome promotes pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 328–328. [Google Scholar] [CrossRef]
- Geller, L. T.; et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017, 357, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Weissman, S.; Takakura, K.; Eibl, G.; Pandol, S. J.; Saruta, M. The Diverse Involvement of Cigarette Smoking in Pancreatic Cancer Development and Prognosis. Pancreas 2020, 49, 612–620. [Google Scholar] [CrossRef]
- Li, D.; et al. DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat. Res.Genet. Toxicol. Environ. Mutagen. 2002, 513, 37–48. [Google Scholar] [CrossRef]
- Genkinger, J. M.; et al. Alcohol Intake and Pancreatic Cancer Risk: A Pooled Analysis of Fourteen Cohort Studies. Cancer Epidemiology Prev. Biomark. 2009, 18, 765–776. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Gou, Y.-W.; Jin, W.-W.; Xiao, M.; Fang, H.-Y. Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies. BMC Cancer 2016, 16, 212. [Google Scholar] [CrossRef]
- Duell, E. J. Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer. Mol. Carcinog. 2012, 51, 40–52. [Google Scholar] [CrossRef]
- Seitz, H. K.; Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer 2007, 7, 599–612. [Google Scholar] [CrossRef]
- Samokhvalov, A. V.; Rehm, J.; Roerecke, M. Alcohol Consumption as a Risk Factor for Acute and Chronic Pancreatitis: A Systematic Review and a Series of Meta-analyses. EBioMedicine 2015, 2, 1996–2002. [Google Scholar] [CrossRef]
- Yadav, D.; Lowenfels, A. B. The Epidemiology of Pancreatitis and Pancreatic Cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Kandikattu, H. K.; Venkateshaiah, S. U.; Mishra, A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr., Metab. Immune Disord.—Drug Targets 2020, 20, 1182–1210. [Google Scholar] [CrossRef]
- Raimondi, S.; Lowenfels, A. B.; Morselli-Labate, A. M.; Maisonneuve, P.; Pezzilli, R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pr. Res. Clin. Gastroenterol. 2010, 24, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Pinho, A. V.; Chantrill, L.; Rooman, I. Chronic pancreatitis: A path to pancreatic cancer. Cancer Lett. 2014, 345, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Downes, D. P.; et al. Impact of Extracellular Fatty Acids and Oxygen Tension on Lipid Synthesis and Assembly in Pancreatic Cancer Cells. ACS Chem. Biol. 2020, 15, 1892–1900. [Google Scholar] [CrossRef]
- Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2017. CA: A Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef]
- YANG, H.; et al. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol. Res. 2023, 31, 83–99. [Google Scholar] [CrossRef]
- Haeberle, L.; Esposito, I. Pathology of pancreatic cancer. Transl. Gastroenterol. Hepatol. 2019, 4, 50–50. [Google Scholar] [CrossRef]
- Chu, L. C.; Goggins, M. G.; Fishman, E. K. Diagnosis and Detection of Pancreatic Cancer. Cancer J. 2017, 23, 333–342. [Google Scholar] [CrossRef]
- McGuigan, A.; et al. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Mohammed, S.; Buren, G. V.; Fisher, W. E. Pancreatic cancer: advances in treatment. World J. Gastroenterol. 2013, 20, 9354–60. [Google Scholar]
- Esposito, I.; Konukiewitz, B.; Schlitter, A. M.; Klöppel, G. Pathology of pancreatic ductal adenocarcinoma: Facts, challenges and future developments. World J. Gastroenterol. 2014, 20, 13833–13841. [Google Scholar] [CrossRef]
- Halls, B. S.; Ward-Smith, P. Identifying Early Symptoms of Pancreatic Cancer. Clin. J. Oncol. Nurs. 2007, 11, 245–248. [Google Scholar] [CrossRef]
- Gullo, L.; Tomassetti, P.; Migliori, M.; Casadei, R.; Marrano, D. Do Early Symptoms of Pancreatic Cancer Exist that Can Allow an Earlier Diagnosis? Pancreas 2001, 22, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018, 24, 2047–2060. [Google Scholar] [CrossRef]
- Chen, F.; Roberts, N. J.; Klein, A. P. Inherited pancreatic cancer. Chin. Clin. Oncol. 2017, 6, 58–58. [Google Scholar] [CrossRef] [PubMed]
- Chiaro, M. D.; Segersvärd, R.; Lohr, M.; Verbeke, C. Early detection and prevention of pancreatic cancer: Is it really possible today? World J. Gastroenterol. 2014, 20, 12118–12131. [Google Scholar] [CrossRef] [PubMed]
- Unger, K.; et al. Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma. Oncotarget 2018, 9, 23078–23090. [Google Scholar] [CrossRef]
- KIM, J.; et al. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J. Gastroenterol. Hepatol. 2004, 19, 182–186. [Google Scholar] [CrossRef]
- Fahrmann, J. F.; et al. A Plasma-Derived Protein-Metabolite Multiplexed Panel for Early-Stage Pancreatic Cancer. JNCI: J. Natl. Cancer Inst. 2019, 111, 372–379. [Google Scholar] [CrossRef]
- Ballehaninna, U. K.; Chamberlain, R. S. Biomarkers for pancreatic cancer: promising new markers and options beyond CA 19-9. Tumor Biol. 2013, 34, 3279–3292. [Google Scholar] [CrossRef]
- Winter, J. M.; Yeo, C. J.; Brody, J. R. Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. J. Surg. Oncol. 2013, 107, 15–22. [Google Scholar] [CrossRef]
- Brennan, D. D. D.; Zamboni, G. A.; Raptopoulos, V. D.; Kruskal, J. B. Comprehensive Preoperative Assessment of Pancreatic Adenocarcinoma with 64-Section Volumetric CT. Radiographics 2007, 27, 1653–1666. [Google Scholar] [CrossRef]
- Al-Hawary, M. M.; et al. Pancreatic Ductal Adenocarcinoma Radiology Reporting Template: Consensus Statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 2014, 270, 248–260. [Google Scholar] [CrossRef]
- Lu, D. S.; et al. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 1996, 199, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S. S.; et al. Indicative findings of pancreatic cancer in prediagnostic CT. Eur. Radiol. 2009, 19, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Treadwell, J. R.; et al. Imaging Tests for the Diagnosis and Staging of Pancreatic Adenocarcinoma. Pancreas 2016, 45, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, R.; et al. Pancreatic diffusion-weighted imaging (DWI): Comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J. Magn. Reson. Imaging 2009, 29, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Puli, S. R.; Bechtold, M. L.; Buxbaum, J. L.; Eloubeidi, M. A. How Good Is Endoscopic Ultrasound–Guided Fine-Needle Aspiration in Diagnosing the Correct Etiology for a Solid Pancreatic Mass&quest. Pancreas 2013, 42, 20–26. [Google Scholar]
- Hewitt, M. J.; et al. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest. Endosc. 2012, 75, 319–331. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R.; Lu, Y.; Xia, Y.; Zhou, H. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for solid pancreatic lesion: a systematic review. J. Cancer Res. Clin. Oncol. 2012, 138, 1433–1441. [Google Scholar] [CrossRef]
- Wang, W.; et al. Use of EUS-FNA in diagnosing pancreatic neoplasm without a definitive mass on CT. Gastrointest. Endosc. 2013, 78, 73–80. [Google Scholar] [CrossRef]
- Li, J.; et al. Endoscopic Ultrasonography for Tumor Node Staging and Vascular Invasion in Pancreatic Cancer: A Meta-Analysis. Dig. Surg. 2015, 31, 297–305. [Google Scholar] [CrossRef]
- Agarwal, B.; Abu-Hamda, E.; Molke, K. L.; Correa, A. M.; Ho, L. Endoscopic Ultrasound-Guided Fine Needle Aspiration and Multidetector Spiral CT in the Diagnosis of Pancreatic Cancer. Am. J. Gastroenterol. 2004, 99, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Paquin, S. C.; et al. A first report of tumor seeding because of EUS-guided FNA of a pancreatic adenocarcinoma. Gastrointest. Endosc. 2005, 61, 610–611. [Google Scholar] [CrossRef]
- Chong, A.; Venugopal, K.; Segarajasingam, D.; Lisewski, D. Tumor seeding after EUS-guided FNA of pancreatic tail neoplasia. Gastrointest. Endosc. 2011, 74, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; et al. Usefulness of 18F-FDG PET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: A meta-analysis. Eur. J. Radiol. 2011, 78, 142–150. [Google Scholar] [CrossRef]
- Kato, K.; et al. Limited Efficacy of 18F-FDG PET/CT for Differentiation Between Metastasis-Free Pancreatic Cancer and Mass-Forming Pancreatitis. Clin. Nucl. Med. 2013, 38, 417–421. [Google Scholar] [CrossRef]
- Okano, K.; et al. 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of small pancreatic cancer. World J. Gastroenterol. 2011, 17, 231–235. [Google Scholar] [CrossRef]
- Kittaka, H.; et al. Role of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Predicting the Pathologic Response to Preoperative Chemoradiation Therapy in Patients With Resectable T3 Pancreatic Cancer. World J. Surg. 2013, 37, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; et al. Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Monitor Clinical Outcomes in Patients Treated With Neoadjuvant Chemo-Radiotherapy for Locally Advanced Pancreatic Cancer. Am. J. Clin. Oncol. 2010, 33, 257–261. [Google Scholar] [CrossRef]
- Conroy, T.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up ☆. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Isaji, S.; et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018, 18, 2–11. [Google Scholar] [CrossRef]
- Varadhachary, G. R.; et al. Borderline Resectable Pancreatic Cancer: Definitions, Management, and Role of Preoperative Therapy. Ann. Surg. Oncol. 2006, 13, 1035–1046. [Google Scholar] [CrossRef]
- Vauthey, J.-N.; Dixon, E. AHPBA/SSO/SSAT Consensus Conference on Resectable and Borderline Resectable Pancreatic Cancer: Rationale and Overview of the Conference. Ann. Surg. Oncol. 2009, 16, 1725–1726. [Google Scholar] [CrossRef]
- Tempero, M. A.; et al. Pancreatic Adenocarcinoma, Version 2.2012: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2012, 10, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; et al. Japanese classification of pancreatic carcinoma by the Japan Pancreas Society: Eighth edition. J. HepatoBiliaryPancreat. Sci. 2024, 31, 755–768. [Google Scholar] [CrossRef]
- A., van der G. N.; et al. Preoperative Biliary Drainage for Cancer of the Head of the Pancreas. N. Engl. J. Med. 2010, 362, 129–137. [Google Scholar] [CrossRef]
- Ghaneh, P.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2022, 8, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Katz, M. H. G.; et al. Efficacy of Preoperative mFOLFIRINOX vs. mFOLFIRINOX Plus Hypofractionated Radiotherapy for Borderline Resectable Adenocarcinoma of the Pancreas. JAMA Oncol. 2022, 8, 1263–1270. [Google Scholar] [CrossRef]
- Delpero, J. R.; et al. Pancreatic Adenocarcinoma with Venous Involvement: Is Up-Front Synchronous Portal-Superior Mesenteric Vein Resection Still Justified? A Survey of the Association Française de Chirurgie. Ann. Surg. Oncol. 2015, 22, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; et al. CT in the prediction of margin-negative resection in pancreatic cancer following neoadjuvant treatment: a systematic review and meta-analysis. Eur. Radiol. 2021, 31, 3383–3393. [Google Scholar] [CrossRef]
- Ye, C.; et al. The prognostic value of CA19-9 response after neoadjuvant therapy in patients with pancreatic cancer: a systematic review and pooled analysis. Cancer Chemother. Pharmacol. 2020, 86, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; et al. Five-Year Outcomes of FOLFIRINOX vs. Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. JAMA Oncol. 2022, 8, 1571–1578. [Google Scholar] [CrossRef]
- Neoptolemos, J. P.; et al. Adjuvant Chemotherapy With Fluorouracil Plus Folinic Acid vs. Gemcitabine Following Pancreatic Cancer Resection: A Randomized Controlled Trial. JAMA. 2010, 304, 1073–1081. [Google Scholar] [CrossRef]
- Neoptolemos, J. P.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Valle, J. W.; et al. Optimal Duration and Timing of Adjuvant Chemotherapy After Definitive Surgery for Ductal Adenocarcinoma of the Pancreas: Ongoing Lessons From the ESPAC-3 Study. J. Clin. Oncol. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Oettle, H.; et al. Adjuvant Chemotherapy With Gemcitabine and Long-term Outcomes Among Patients With Resected Pancreatic Cancer: The CONKO-001 Randomized Trial. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zhang, C.-W.; Hu, Z.-M.; Hong, D.-F. Pancreatic cancer: Open or minimally invasive surgery? World J. Gastroenterol. 2016, 22, 7301–7310. [Google Scholar] [CrossRef]
- Gagner, M.; Pomp, A. Laparoscopic pancreatic resection: is it worthwhile? J. Gastrointest. Surg. 1997, 1, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Palanivelu, C.; et al. Evolution in techniques of laparoscopic pancreaticoduodenectomy: a decade long experience from a tertiary center. J. Hepato-Biliary-Pancreat. Surg. 2009, 16, 731. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, S. M.; et al. Early National Experience with Laparoscopic Pancreaticoduodenectomy for Ductal Adenocarcinoma: A Comparison of Laparoscopic Pancreaticoduodenectomy and Open Pancreaticoduodenectomy from the National Cancer Data Base. J. Am. Coll. Surg. 2015, 221, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Song, K. B.; et al. Matched Case-control Analysis Comparing Laparoscopic and Open Pylorus-preserving Pancreaticoduodenectomy in Patients With Periampullary Tumors. Ann. Surg. 2015, 262, 146–155. [Google Scholar] [CrossRef]
- Chen, S.; et al. Robot-assisted laparoscopic versus open pancreaticoduodenectomy: a prospective, matched, mid-term follow-up study. Surg. Endosc. 2015, 29, 3698–3711. [Google Scholar] [CrossRef]
- Dokmak, S.; et al. Laparoscopic Pancreaticoduodenectomy Should Not Be Routine for Resection of Periampullary Tumors. J. Am. Coll. Surg. 2015, 220, 831–838. [Google Scholar] [CrossRef]
- Tran, T. B.; et al. The First Decade of Laparoscopic Pancreaticoduodenectomy in the United States: Costs and Outcomes Using the Nationwide Inpatient Sample. Surg. Endosc. 2016, 30, 1778–1783. [Google Scholar] [CrossRef]
- Baker, E. H.; et al. Robotic pancreaticoduodenectomy: comparison of complications and cost to the open approach. Int. J. Méd. Robot. Comput. Assist. Surg. 2016, 12, 554–560. [Google Scholar] [CrossRef]
- Tan, C.-L.; Zhang, H.; Peng, B.; Li, K.-Z. Outcome and costs of laparoscopic pancreaticoduodenectomy during the initial learning curve vs. laparotomy. World J. Gastroenterol. 2015, 21, 5311–5319. [Google Scholar] [CrossRef]
- Adam, M. A.; et al. Minimally Invasive Versus Open Pancreaticoduodenectomy for Cancer. Ann. Surg. 2015, 262, 372–377. [Google Scholar] [CrossRef]
- Kim, H. S.; et al. Perioperative and oncologic outcome of robot-assisted minimally invasive (hybrid laparoscopic and robotic) pancreatoduodenectomy: based on pancreatic fistula risk score and cancer/staging matched comparison with open pancreatoduodenectomy. Surg. Endosc. 2021, 35, 1675–1681. [Google Scholar] [CrossRef]
- Khalid, A.; et al. Outcomes of minimally invasive vs. open pancreatoduodenectomies in pancreatic adenocarcinoma: analysis of ACS-NSQIP data. Langenbeck’s Arch. Surg. 2024, 409, 258. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, T.; et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD). Ann. Surg. 2019, 269, 2–9. [Google Scholar] [CrossRef] [PubMed]
- van Bodegraven, E. A.; et al. Minimally invasive robot-assisted and laparoscopic distal pancreatectomy in a pan-European registry a retrospective cohort study. Int. J. Surg. 2024, 110, 3554–3561. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. H.; et al. A Comparative Study of Laparoscopic vs. Open Distal Pancreatectomy for Left-Sided Ductal Adenocarcinoma: A Propensity Score-Matched Analysis. J. Am. Coll. Surg. 2015, 220, 177–185. [Google Scholar] [CrossRef]
- Sulpice, L.; et al. Laparoscopic Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2015, 262, 868–874. [Google Scholar] [CrossRef]
- Bhandare, M. S.; Parray, A.; Chaudhari, V. A.; Shrikhande, S. V. Minimally invasive surgery for pancreatic cancer—are we there yet?—a narrative review. Chin. Clin. Oncol. 2022, 11, 3–3. [Google Scholar] [CrossRef]
- Pędziwiatr, M.; et al. Minimally invasive pancreatic cancer surgery: What is the current evidence? Méd. Oncol. 2017, 34, 125. [Google Scholar] [CrossRef]
| Imagistic Method | Benefits | Limitations |
|
CT |
-Accessible -Cheapest -Best validated |
-Kidney injury -Involves radiation exposure |
|
MRI |
-Offers superior evaluation of the local pancreatic disease -Does not involve radiation exposure -Suitable for patients with iodine allergy |
-More expensive -Less available -Contraindicated in patients with metal implants |
|
EUS+- FNA |
-High sensitivity even for small lesions -Provides histological sample |
-Operator dependent -Less available -Not suitable for metastatic disease evaluation |
|
PET-CT |
-Metastatic disease evaluation -Follow-up for recurrence or response after adjuvant therapy |
-Expensive -Less available -Involves radiation exposure |
| Pancreatic Region | Head | Body | Tail |
| Station number | 6- infrapyloric lymph nodes | 8a- lymph nodes in the anterosuperior group along the common hepatic artery | 8a- lymph nodes in the anterosuperior group along the common hepatic artery |
| 8a- lymph nodes in the anterosuperior group along the common hepatic artery | 8p- lymph nodes in the posterior group along the common hepatic artery | 9- lymph nodes around the celiac artery | |
| 8p- lymph nodes in the posterior group along the common hepatic artery | 9- lymph nodes around the celiac artery | 10- lymph nodes at the splenic hilum | |
| 12a- lymph nodes along the hepatic artery | 10- lymph nodes at the splenic hilum | 11p- lymph nodes along the proximal splenic artery | |
| 12b- lymph nodes along the bile duct | 11p- lymph nodes along the proximal splenic artery | 11d- lymph nodes along the distal splenic artery | |
| 12p- lymph nodes along the portal vein | 11d- lymph nodes along the distal splenic artery | 18- lymph nodes along the inferior margin of the pancreas | |
| 13- lymph nodes on the posterior aspect of the head of the pancreas | 14t- lymph nodes along the superior mesenteric artery (tumor side) | ||
| 14t- lymph nodes along the superior mesenteric artery (tumor side) | 18- lymph nodes along the inferior margin of the pancreas) | ||
| 17- lymph nodes on the anterior surface of the head of the pancreas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
