Submitted:
21 January 2026
Posted:
22 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Oral-Gut Microbiome Axis: Fundamentals of a Critical Connection
2.1. The Distinct Yet Interdependent Ecosystems
2.2. The Physiological Barrier and Basal Microbial Exchange
2.3. Pathological Translocation: When Oral Commensals Become Gut Pathobionts
2.4. Bacterial Adaptations and the Immune-Mediated “Oral-Immune-Gut Axis”
3. The ICU Crucible: Synergistic Disruption of the Axis by Standard Interventions
3.1. Endotracheal Intubation: Engineering a Dysbiotic Oral Reservoir
3.2. Broad-Spectrum Antibiotics: Depleting the Gut’s Indigenous Defense Army
3.3. Proton Pump Inhibitors: Disabling the Gastric Acid Gatekeeper
3.4. The Synergistic Cascade: A Trajectory of Escalating Dysbiosis
4. Oral Care Reimagined: From Chemical Antisepsis to Ecological Stewardship in the ICU
4.1. The Fall of a Former Standard: Re-Evaluating Chlorhexidine
4.2. The Rise of Evidence-Based, Ecological Alternatives
4.2.1. Mechanical Debridement: Re-Establishing Tooth Brushing as the Cornerstone
4.2.2. Physiological Irrigation: The Re-Emergence of Normal Saline
4.2.3. Selective Oropharyngeal Decontamination (SOD): A Paradigm of Precision Targeting
5. Conclusions and Future Prospects
5.1. Expanding the Research Horizon: From Pulmonary to Systemic Outcomes
5.2. Exploring Novel Microbiome-Targeted Therapies
5.3. Refining SDD/SOD Strategies: Towards Precision Application
| Factor | Mechanism of Disruption | Clinical Implications |
|---|---|---|
| Endotracheal Intubation | Impairs salivary flow, reduces swallowing, suppresses speech and mastication, decreases natural oral clearance, promotes biofilm formation, favors pathogenic overgrowth (e.g., Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans). | Increased oral dysbiosis, higher risk of aspiration, ventilator-associated pneumonia (VAP), gut colonization by oral pathogens, potential progression to enteric sepsis and multiple organ dysfunction. |
| Antibiotics | Depletes commensal gut microbiota, reduces colonization resistance, promotes relative enrichment of oral bacteria in the gut (e.g., Klebsiella, Enterococcus), disrupts immune homeostasis (↓ IgA, ↓ Tregs). | Intestinal dysbiosis, immune dysfunction, increased risk of Clostridioides difficile infection, systemic inflammation, and impaired mucosal immunity. |
| Proton Pump Inhibitors (PPIs) | Reduces gastric acidity (pH ↑), weakens chemical barrier, enhances survival and colonization of acid-sensitive oral bacteria (e.g., Streptococcus anginosus, Fusobacterium nucleatum), increases oral-to-gut transmission. | Increased risk of gastrointestinal infections (e.g., C. difficile), colorectal cancer, systemic inflammation, altered gut microbiota composition (↑ Streptococcus, ↑ Lactobacillus). |
| Sedation & Immobility | Decreases oral and gut motility, impairs secretion clearance, reduces cough reflex and mucociliary clearance, promotes stasis and bacterial overgrowth. | Facilitates microbial translocation, exacerbates dysbiosis, increases risk of aspiration, VAP, and gut-derived sepsis. |
| Oral Care Method | Key Features/Mechanism | Clinical Outcomes/Evidence | Practical Considerations |
|---|---|---|---|
| Chlorhexidine-based Care | Broad-spectrum antiseptic; reduces bacterial load; easy to apply. | Associated with mucosal injury, microbial resistance, ecological disruption, potential ↑ mortality; no significant reduction in VAP incidence. | Use discouraged in recent guidelines; avoid routine use in mixed ICU populations. |
| Standardized Oral Care without Chlorhexidine | Bundled care: oral assessment, tooth brushing, moisture maintenance, secretion aspiration; no antiseptic. | No significant mortality benefit; may improve oral health; feasible and acceptable in clinical practice. | Emphasizes mechanical cleaning and mucosal protection; suitable for most ventilated patients. |
| Saline-based Oral Care | Isotonic saline irrigation; mechanical flushing; preserves microbiome integrity. | Safe, non-toxic; associated with reduced mortality in network meta-analysis; does not promote resistance. | Ideal for patients with mucosal compromise, renal dysfunction, or where microbiome preservation is prioritized. |
| Tooth Brushing | Physically disrupts dental plaque and biofilms; reduces microbial burden; uses soft-bristled brush. | Reduces HAP/VAP incidence, shortens ICU stay and mechanical ventilation duration; recommended by SHEA. | Should be done ≥ twice daily; no additional benefit from more frequent brushing; compatible with other oral care methods. |
| Selective Oropharyngeal Decontamination (SOD) | Topical non-absorbable antibiotic paste (e.g., polymyxin, tobramycin, nystatin) applied to oropharynx. | Reduces ICU-acquired bacteremia, VAP, and 28-day mortality; does not increase antimicrobial resistance in low/moderate resistance settings. | Best suited for high-risk patients in controlled resistance environments; requires monitoring. |
| Saliva Substitutes/Moisturizers | Artificial saliva or moisturizing gel; maintains mucosal integrity and hydration. | Prevents xerostomia, supports natural antimicrobial peptides and mucosal barrier function. | Often used as adjunct to brushing or saline care; especially useful in sedated or dehydrated patients. |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef]
- Leonov, G.; Salikhova, D.; Starodubova, A.; Vasilyev, A.; Makhnach, O.; Fatkhudinov, T.; Goldshtein, D. Oral microbiome dysbiosis as a risk factor for stroke: A comprehensive review. Microorganisms 2024, 12, 1732. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, W.; Li, Y.; Cui, J.; Zhu, M.; Liu, Y.; Liu, Y. The oral-gut microbiota axis: A link in cardiometabolic diseases. Npj Biofilms Microbiomes 2025, 11, 11. [Google Scholar] [CrossRef]
- Dodson, B.; Suner, T.; Haar, E.L.V.; Han, Y.W. Oral microbiome and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2025, 93, e70107. [Google Scholar] [CrossRef] [PubMed]
- Clasen, F.; Yildirim, S.; Arıkan, M.; Garcia-Guevara, F.; Hanoğlu, L.; Yılmaz, N.H.; şen, A.; Celik, H.K.; Neslihan, A.A.; Demir, T.K.; et al. Microbiome signatures of virulence in the oral-gut-brain axis influence Parkinson’s disease and cognitive decline pathophysiology. Gut Microbes 2025, 17, 2506843. [Google Scholar] [CrossRef]
- Kuraji, R.; Shiba, T.; Dong, T.S.; Numabe, Y.; Kapila, Y.L. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J. Gastroenterol. 2023, 29, 967–996. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, F.; Gtif, I.; Alfadhli, S.; Charfeddine, S.; Ghorbel, W.; Abdelhédi, R.; Benmarzoug, R.; Abid, L.; Bouayed Abdelmoula, N.; Elloumi, I.; et al. A potential oral microbiome signature associated with coronary artery disease in Tunisia. Biosci. Rep. 2022, 42, R20220583. [Google Scholar] [CrossRef]
- González-Febles, J.; Sanz, M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontology 2000 2021, 87, 181–203. [Google Scholar] [CrossRef]
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, M.; Ready, D.; Brealey, D.; Ryu, J.; Bercades, G.; Nagle, J.; Borja-Boluda, S.; Agudo, E.; Petrie, A.; Suvan, J.; et al. Changes in dental plaque following hospitalisation in a critical care unit: An observational study. Crit. Care 2013, 17, R189. [Google Scholar] [CrossRef] [PubMed]
- Lagerlöf, F.; Dawes, C. The effect of swallowing frequency on oral sugar clearance and pH changes by Streptococcus mitior in vivo after sucrose ingestion. J. Dent. Res. 1985, 64, 1229–1232. [Google Scholar] [CrossRef]
- Chevalier, M.; Medioni, E.; Prêcheur, I. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 2012, 61, 1016–1022. [Google Scholar] [CrossRef]
- Kanamori, D.; Fujii, T.; Yoshida, M.; Ito, R.; Sakai, A.; Takahashi, H.; Kuramitsu, K.; Funasaka, K.; Ohno, E.; Hirooka, Y.; et al. Oral care for intubated patients in the intensive care unit: Examination of bacterial count and microbiota. Crit. Care 2025, 29, 320. [Google Scholar] [CrossRef]
- Shi, T.; Wang, J.; Dong, J.; Hu, P.; Guo, Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and their Roles in the Progression of Respiratory Diseases. Pathogens 2023, 12, 1110. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, B.; Gao, H.; He, C.; Hua, R.; Liang, C.; Xin, S.; Wang, Y.; Xu, J. Insight into the Relationship between Oral Microbiota and the Inflammatory Bowel Disease. Microorganisms 2022, 10, 1868. [Google Scholar] [CrossRef]
- Maier, L.; Goemans, C.V.; Wirbel, J.; Kuhn, M.; Eberl, C.; Pruteanu, M.; Müller, P.; Garcia-Santamarina, S.; Cacace, E.; Zhang, B.; et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 2021, 599, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, S.R.S.; Mahmud, B.; Dantas, G. Antibiotic perturbations to the gut microbiome. Nat. Rev. Microbiol. 2023, 21, 772–788. [Google Scholar] [CrossRef]
- Liao, C.; Rolling, T.; Djukovic, A.; Fei, T.; Mishra, V.; Liu, H.; Lindberg, C.; Dai, L.; Zhai, B.; Peled, J.U.; et al. Oral bacteria relative abundance in faeces increases due to gut microbiota depletion and is linked with patient outcomes. Nat. Microbiol. 2024, 9, 1555–1565. [Google Scholar] [CrossRef]
- Jin, S.; Wetzel, D.; Schirmer, M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr. Opin. Microbiol. 2022, 67, 102147. [Google Scholar] [CrossRef]
- Atarashi, K.; Suda, W.; Luo, C.; Kawaguchi, T.; Motoo, I.; Narushima, S.; Kiguchi, Y.; Yasuma, K.; Watanabe, E.; Tanoue, T.; et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science 2017, 358, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Contijoch, E.J.; Britton, G.J.; Yang, C.; Mogno, I.; Li, Z.; Ng, R.; Llewellyn, S.R.; Hira, S.; Johnson, C.; Rabinowitz, K.M.; et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 2019, 8, e40553. [Google Scholar] [CrossRef]
- Britton, G.J.; Contijoch, E.J.; Spindler, M.P.; Aggarwala, V.; Dogan, B.; Bongers, G.; San Mateo, L.; Baltus, A.; Das, A.; Gevers, D.; et al. Defined microbiota transplant restores Th17/RORγt(+) regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proc. Natl. Acad. Sci. USA 2020, 117, 21536–21545. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Jiang, Y.; Wu, L.; Fu, J.; Du, J.; Luo, Z.; Guo, L.; Xu, J.; Liu, Y. Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis. Nat. Commun. 2024, 15, 1617. [Google Scholar] [CrossRef]
- Schmidt, T.S.B.; Li, S.S.; Maistrenko, O.M.; Akanni, W.; Coelho, L.P.; Dolai, S.; Fullam, A.; Glazek, A.M.; Hercog, R.; Herrema, H.; et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat. Med. 2022, 28, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Willems, R.P.J.; Schut, M.C.; Kaiser, A.M.; Groot, T.H.; Abu-Hanna, A.; Twisk, J.W.R.; van Dijk, K.; Vandenbroucke-Grauls, C.M.J.E. Association of proton pump inhibitor use with risk of acquiring Drug-Resistant enterobacterales. JAMA Netw. Open 2023, 6, e230470. [Google Scholar] [CrossRef]
- de Jager, C.P.C.; Wever, P.C.; Gemen, E.F.A.; van Oijen, M.G.H.; van Gageldonk-Lafeber, A.B.; Siersema, P.D.; Kusters, G.C.M.; Laheij, R.J.F. Proton pump inhibitor therapy predisposes to community-acquired Streptococcus pneumoniae pneumonia. Aliment. Pharmacol. Ther. 2012, 36, 941–949. [Google Scholar] [CrossRef]
- Haastrup, P.F.; Thompson, W.; Søndergaard, J.; Jarbøl, D.E. Side effects of Long-Term proton pump inhibitor use: A review. Basic Clin. Pharmacol. Toxicol. 2018, 123, 114–121. [Google Scholar] [CrossRef]
- Jackson, M.A.; Verdi, S.; Maxan, M.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 2018, 9, 2655. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef]
- Forslund, S.K.; Chakaroun, R.; Zimmermann-Kogadeeva, M.; Markó, L.; Aron-Wisnewsky, J.; Nielsen, T.; Moitinho-Silva, L.; Schmidt, T.S.B.; Falony, G.; Vieira-Silva, S.; et al. Combinatorial, additive and dose-dependent drug-microbiome associations. Nature 2021, 600, 500–505. [Google Scholar] [CrossRef]
- Nagata, N.; Nishijima, S.; Miyoshi-Akiyama, T.; Kojima, Y.; Kimura, M.; Aoki, R.; Ohsugi, M.; Ueki, K.; Miki, K.; Iwata, E.; et al. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology 2022, 163, 1038–1052. [Google Scholar] [CrossRef]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, C.; Li, M.; Hu, G.; Zhao, X.; Chen, W. Compared to histamine-2 receptor antagonist, proton pump inhibitor induces stronger oral-to-gut microbial transmission and gut microbiome alterations: A randomised controlled trial. Gut 2024, 73, 1087–1097. [Google Scholar] [CrossRef]
- Patel, J.J.; Barash, M. The gut in critical illness. Curr. Gastroenterol. Rep. 2025, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cammisotto, V.; Bartimoccia, S.; Pignatelli, P.; Carnevale, R.; Nocella, C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, H.; Beckmann, T.S.; Fröhlich, L.; Soccorsi, T.; Le Terrier, C.; de Watteville, A.; Schrenzel, J.; Heidegger, C. The central and biodynamic role of gut microbiota in critically ill patients. Crit. Care 2022, 26, 250. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Wang, M.; Zhang, X.; Zhang, Y.; Qi, H.; Liu, H.; Wu, Y.; Wen, X.; Chen, X.; Han, M.; et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice. Nat. Commun. 2024, 15, 6737. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Yu, Y.; Wang, X.; Zhen, Z.; Yuan, Y.; Xie, B.; Han, M.; Wang, M.; Zhang, X.; et al. Small intestinal γδ T17 cells promote SAE through STING/C1q-induced microglial synaptic pruning in male mice. Nat. Commun. 2025, 16, 6779. [Google Scholar] [CrossRef]
- Cho, N.A.; Strayer, K.; Dobson, B.; Mcdonald, B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024, 16, 2351478. [Google Scholar] [CrossRef]
- Van Hul, M.; Cani, P.D.; Petitfils, C.; De Vos, W.M.; Tilg, H.; El-Omar, E.M. What defines a healthy gut microbiome? Gut 2024, 73, 1893–1908. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.; Chen, X.; Wang, J.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Ding, T.; Li, H. Oral microbiome in human health and diseases. mLife 2024, 3, 367–383. [Google Scholar] [CrossRef]
- Willis, J.R.; Gabaldón, T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef]
- Baker, J.L.; Mark Welch, J.L.; Kauffman, K.M.; Mclean, J.S.; He, X. The oral microbiome: Diversity, biogeography and human health. Nat. Rev. Microbiol. 2024, 22, 89–104. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhou, F.; Wang, H.; Xu, X.; Xu, S.; Zhang, C.; Zhang, Y.; Lu, M.; Zhang, Y.; Zhou, M.; et al. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int. J. Oral Sci. 2023, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.K.; Tong, S.L.Y.; Wong, M.C.S.; Chan, J.Y.K.; Ip, M.; Hui, M.; Lai, C.K.C.; Ng, R.W.Y.; Ho, W.C.S.; Yeung, A.C.M.; et al. Extent of Oral-Gut transmission of bacterial and fungal microbiota in healthy chinese adults. Microbiol. Spectr. 2023, 11, e281422. [Google Scholar] [CrossRef]
- Murgolo, N.J.; Cerami, A.; Henderson, G.B. Biomedical science and the third world. Under the volcano. Trypanothione reductase. Ann. N. Y. Acad. Sci. 1989, 569, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Nuccio, S.; Mohanty, I.; Hagey, L.R.; Dorrestein, P.C.; Chu, H.; Raffatellu, M. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. 2024, 24, 798–809. [Google Scholar] [CrossRef]
- Neurath, M.F.; Artis, D.; Becker, C. The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 2025, 10, 573–592. [Google Scholar] [CrossRef]
- Woelfel, S.; Silva, M.S.; Stecher, B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024, 32, 820–836. [Google Scholar] [CrossRef] [PubMed]
- Iliev, I.D.; Ananthakrishnan, A.N.; Guo, C. Microbiota in inflammatory bowel disease: Mechanisms of disease and therapeutic opportunities. Nat. Rev. Microbiol. 2025, 23, 509–524. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Weisdorf, D.J.; Costalonga, M.; Staley, C. No evidence for colonization of oral bacteria in the distal gut in healthy adults. Proc. Natl. Acad. Sci. USA 2021, 118, e2114152118. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.S.; Hayward, M.R.; Coelho, L.P.; Li, S.S.; Costea, P.I.; Voigt, A.Y.; Wirbel, J.; Maistrenko, O.M.; Alves, R.J.; Bergsten, E.; et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 2019, 8, e42693. [Google Scholar] [CrossRef]
- Könönen, E.; Gursoy, U.K. Oral prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front. Microbiol. 2022, 12, 798763. [Google Scholar] [CrossRef]
- Bao, J.; Li, L.; Zhang, Y.; Wang, M.; Chen, F.; Ge, S.; Chen, B.; Yan, F. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota. Int. J. Oral Sci. 2022, 14, 32. [Google Scholar] [CrossRef]
- Kunath, B.J.; De Rudder, C.; Laczny, C.C.; Letellier, E.; Wilmes, P. The oral-gut microbiome axis in health and disease. Nat. Rev. Microbiol. 2024, 22, 791–805. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Chen, Y.; Chen, T.; Shen, Z.; Wang, Y.; Jian, Y.; Xiang, G.; Ma, X.; Zhao, N.; et al. Veillonella intestinal colonization promotes C. Difficile infection in Crohn’s disease. Cell Host Microbe 2025, 33, 1518–1534. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, W.; Guan, J.; Ma, P.; Li, Y.; Zhang, Y.; Zhu, W.; Zhou, Y.; Zou, Y.; Zeng, T.; et al. Bile acid synthesis dysregulation in liver diseases promotes ectopic expansion of oral streptococci in the intestine. Cell Rep. 2025, 44, 116374. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Cao, P.; Su, W.; Zhan, N.; Dong, W. Fusobacterium nucleatum facilitates ulcerative colitis through activating IL-17F signaling to NF-κB via the upregulation of CARD3 expression. J. Pathol. 2020, 250, 170–182. [Google Scholar] [CrossRef]
- Arimatsu, K.; Yamada, H.; Miyazawa, H.; Minagawa, T.; Nakajima, M.; Ryder, M.I.; Gotoh, K.; Motooka, D.; Nakamura, S.; Iida, T.; et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci. Rep. 2014, 4, 4828. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, L.; Zhou, X.; Zhao, D.; Wang, Y.; Min, H.; Song, S.; Sun, W.; Gao, Q.; Hu, Q.; et al. Experimental periodontitis deteriorated atherosclerosis associated with trimethylamine N-Oxide metabolism in mice. Front. Cell. Infect. Microbiol. 2022, 11, 820535. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, M.; Huang, X.; Chen, G.; Yin, Y.; Lu, X.; Feng, G.; Yu, R.; Chen, L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front. Immunol. 2021, 12, 766560. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Ma, X.; Yang, B.; Liu, Y.; Xie, Y.; Wang, X.; Yuan, W.; Ma, J. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes 2022, 14, 2073785. [Google Scholar] [CrossRef] [PubMed]
- Saba, E.; Farhat, M.; Daoud, A.; Khashan, A.; Forkush, E.; Menahem, N.H.; Makkawi, H.; Pandi, K.; Angabo, S.; Kawasaki, H.; et al. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024, 73, 770–786. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wu, F.; Kwak, S.; Wang, C.; Usyk, M.; Freedman, N.D.; Huang, W.; Um, C.Y.; Gonda, T.A.; Oberstein, P.E.; et al. Oral bacterial and fungal microbiome and subsequent risk for pancreatic cancer. JAMA Oncol. 2025, 11, 1331–1340. [Google Scholar] [CrossRef]
- Zilberstein, N.F.; Engen, P.A.; Swanson, G.R.; Naqib, A.; Post, Z.; Alutto, J.; Green, S.J.; Shaikh, M.; Lawrence, K.; Adnan, D.; et al. The bidirectional effects of periodontal disease and oral dysbiosis on gut inflammation in inflammatory bowel disease. J. Crohn’s Colitis 2025, 19, e162. [Google Scholar] [CrossRef] [PubMed]
- Mcneill, K.; Hamilton, I.R. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 2003, 221, 25–30. [Google Scholar] [CrossRef]
- Sato, K.; Takahashi, N.; Kato, T.; Matsuda, Y.; Yokoji, M.; Yamada, M.; Nakajima, T.; Kondo, N.; Endo, N.; Yamamoto, R.; et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci. Rep. 2017, 7, 6955. [Google Scholar] [CrossRef]
- Rojas-Tapias, D.F.; Brown, E.M.; Temple, E.R.; Onyekaba, M.A.; Mohamed, A.M.T.; Duncan, K.; Schirmer, M.; Walker, R.L.; Mayassi, T.; Pierce, K.A.; et al. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol. 2022, 7, 1673–1685. [Google Scholar] [CrossRef]
- Kobayashi, R.; Ogawa, Y.; Hashizume-Takizawa, T.; Kurita-Ochiai, T. Oral bacteria affect the gut microbiome and intestinal immunity. Pathog. Dis. 2020, 78, a24. [Google Scholar] [CrossRef]
- Coccia, M.; Harrison, O.J.; Schiering, C.; Asquith, M.J.; Becher, B.; Powrie, F.; Maloy, K.J. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med. 2012, 209, 1595–1609. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.M.; Sefik, E.; Upadhyay, R.; Weissleder, R.; Benoist, C.; Mathis, D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc. Natl. Acad. Sci. USA 2014, 111, 6696–6701. [Google Scholar] [CrossRef]
- Kitamoto, S.; Kamada, N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontology 2000 2022, 89, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Harbour, S.N.; Maynard, C.L.; Zindl, C.L.; Schoeb, T.R.; Weaver, C.T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl. Acad. Sci. USA 2015, 112, 7061–7066. [Google Scholar] [CrossRef]
- Ahern, P.P.; Schiering, C.; Buonocore, S.; Mcgeachy, M.J.; Cua, D.J.; Maloy, K.J.; Powrie, F. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010, 33, 279–288. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y.; Gillilland, M.G.R.; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J.C.; Kuffa, P.; et al. The intermucosal connection between the mouth and gut in commensal Pathobiont-Driven colitis. Cell 2020, 182, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.A.; Clay, S.L.; Lavoie, S.L.; Bae, S.; Lang, J.K.; Fonseca-Pereira, D.; Rosinski, K.G.; Ou, N.; Glickman, J.N.; Garrett, W.S. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 2021, 13, 1987780. [Google Scholar] [CrossRef] [PubMed]
- Nagao, J.; Kishikawa, S.; Tanaka, H.; Toyonaga, K.; Narita, Y.; Negoro-Yasumatsu, K.; Tasaki, S.; Arita-Morioka, K.; Nakayama, J.; Tanaka, Y. Pathobiont-responsive Th17 cells in gut-mouth axis provoke inflammatory oral disease and are modulated by intestinal microbiome. Cell Rep. 2022, 40, 111314. [Google Scholar] [CrossRef]
- Ashizawa, H.; Iwanaga, N.; Nemoto, K.; Hirayama, T.; Yoshida, M.; Takeda, K.; Ide, S.; Tashiro, M.; Hosogaya, N.; Takazono, T.; et al. Prevotella intermedia Synergistically Exacerbates Pneumonia Induced by Oral Streptococci. J. Infect. Dis. 2025, 232, e280–e289. [Google Scholar] [CrossRef]
- Colombo, A.V.; Barbosa, G.M.; Higashi, D.; di Micheli, G.; Rodrigues, P.H.; Simionato, M.R.L. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health. J. Med. Microbiol. 2013, 62, 1592–1600. [Google Scholar] [CrossRef]
- Gibbons, R.J. Bacterial adhesion to oral tissues: A model for infectious diseases. J. Dent. Res. 1989, 68, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Hay, D.I.; Childs, W.C.R.; Davis, G. Role of cryptic receptors (cryptitopes) in bacterial adhesion to oral surfaces. Arch. Oral Biol. 1990, 35, 107S–114S. [Google Scholar] [CrossRef]
- Arimizu, C.; Akahoshi, T.; Jinno, T.; Furuta, M.; Ohashi, A.; Takamori, S.; Wada, N. Association of number of oral bacteria with Ventilator-Associated pneumonia and delirium in patients in the intensive care unit. J. Intensive Care Med. 2025, 40, 779–788. [Google Scholar] [CrossRef]
- Dale, C.M.; Angus, J.E.; Sutherland, S.; Dev, S.; Rose, L. Exploration of difficulty accessing the mouths of intubated and mechanically ventilated adults for oral care: A video and photographic elicitation study. J. Clin. Nurs. 2020, 29, 1920–1932. [Google Scholar] [CrossRef]
- Aktan, G.G.; Coşkun Palaz, S. Oral care practices, attitudes and challenges faced by intensive care unit nurses in the care of intubated patients: A descriptive study. Nurs. Crit. Care 2025, 30, e70095. [Google Scholar] [CrossRef]
- Alqaissi, N.; Qtait, M. Knowledge, attitudes, and practices of intensive care unit nurses regarding oral care for intubated patients in hebron hospitals, palestine. SAGE Open Nurs. 2025, 11, 2126021225. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.A.; Silva, L.D.D.A.; Santos, C.C.D.O.; Fonseca-Silva, T. Oral care practices for patients in intensive care unit: A systematic review. Int. J. Dent. Hyg. 2025, 23, 80–88. [Google Scholar] [CrossRef]
- Tuon, F.F.; Gavrilko, O.; Almeida, S.D.; Sumi, E.R.; Alberto, T.; Rocha, J.L.; Rosa, E.A. Prospective, randomised, controlled study evaluating early modification of oral microbiota following admission to the intensive care unit and oral hygiene with chlorhexidine. J. Glob. Antimicrob. Resist. 2017, 8, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.M.; Wilson, M.J.; Lewis, M.A.O.; Wise, M.P.; Palmer, N.; Hayes, A.J.; Barnes, R.A.; Williams, D.W. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J. Crit. Care 2017, 37, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Bahrani-Mougeot, F.K.; Paster, B.J.; Coleman, S.; Barbuto, S.; Brennan, M.T.; Noll, J.; Kennedy, T.; Fox, P.C.; Lockhart, P.B. Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J. Clin. Microbiol. 2007, 45, 1588–1593. [Google Scholar] [CrossRef]
- Talbert, S.; Bourgault, A.M.; Rathbun, K.P.; Abomoelak, B.; Deb, C.; Mehta, D.; Sole, M.L. Pepsin a in tracheal secretions from patients receiving mechanical ventilation. Am. J. Crit. Care: Off. Publ. Am. Assoc. Crit.-Care Nurses 2021, 30, 443–450. [Google Scholar] [CrossRef]
- Jaillette, E.; Girault, C.; Brunin, G.; Zerimech, F.; Behal, H.; Chiche, A.; Broucqsault-Dedrie, C.; Fayolle, C.; Minacori, F.; Alves, I.; et al. Impact of tapered-cuff tracheal tube on microaspiration of gastric contents in intubated critically ill patients: A multicenter cluster-randomized cross-over controlled trial. Intensive Care Med. 2017, 43, 1562–1571. [Google Scholar] [CrossRef]
- Arimizu, C.; Akahoshi, T.; Jinno, T.; Furuta, M.; Ohashi, A.; Takamori, S.; Wada, N. Association of number of oral bacteria with Ventilator-Associated pneumonia and delirium in patients in the intensive care unit. J. Intensive Care Med. 2025, 40, 779–788. [Google Scholar] [CrossRef]
- Sumi, Y.; Miura, H.; Michiwaki, Y.; Nagaosa, S.; Nagaya, M. Colonization of dental plaque by respiratory pathogens in dependent elderly. Arch. Gerontol. Geriatr. 2007, 44, 119–124. [Google Scholar] [CrossRef]
- Tada, A.; Hanada, N. Opportunistic respiratory pathogens in the oral cavity of the elderly. FEMS Immunol. Med. Microbiol. 2010, 60, 1–17. [Google Scholar] [CrossRef]
- Heo, S.; Haase, E.M.; Lesse, A.J.; Gill, S.R.; Scannapieco, F.A. Genetic relationships between respiratory pathogens isolated from dental plaque and bronchoalveolar lavage fluid from patients in the intensive care unit undergoing mechanical ventilation. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 47, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hu, W.; He, J.; Guo, L.; Lux, R.; Shi, W. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Mol. Oral Microbiol. 2011, 26, 337–352. [Google Scholar] [CrossRef]
- Charles, M.P.; Easow, J.M.; Joseph, N.M.; Ravishankar, M.; Kumar, S.; Sivaraman, U. Aetiological agents of ventilator-associated pneumonia and its resistance pattern—A threat for treatment. Australas. Med. J. 2013, 6, 430–434. [Google Scholar] [CrossRef]
- Kawamura, S.; Goto, H.; Kikuchi, T.; Okabe, T.; Hasegawa, Y.; Sugita, Y.; Fujitsuka, H.; Kataoka, R.; Katsumata, K.; Goto, R.; et al. IL-35 may prevent the exacerbation of aspiration pneumonia involving porphyromonas gingivalis by suppressing IL-17 production. Am. J. Pathol. 2025, 195, 652–662. [Google Scholar] [CrossRef]
- Bassim, C.W.; Gibson, G.; Ward, T.; Paphides, B.M.; Denucci, D.J. Modification of the risk of mortality from pneumonia with oral hygiene care. J. Am. Geriatr. Soc. 2008, 56, 1601–1607. [Google Scholar] [CrossRef]
- Yoneyama, T.; Yoshida, M.; Matsui, T.; Sasaki, H. Oral care and pneumonia. Oral Care Working Group. Lancet 1999, 354, 515. [Google Scholar] [CrossRef]
- Klompas, M.; Speck, K.; Howell, M.D.; Greene, L.R.; Berenholtz, S.M. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: Systematic review and meta-analysis. JAMA Intern. Med. 2014, 174, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wu, X.; Zhang, Q.; Li, C.; Worthington, H.V.; Hua, F. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2020, 12, D8367. [Google Scholar]
- Price, R.; Maclennan, G.; Glen, J.; Suddicu, C. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: Systematic review and network meta-analysis. BMJ (Clin. Res. Ed.) 2014, 348, g2197. [Google Scholar] [CrossRef]
- Deschepper, M.; Waegeman, W.; Eeckloo, K.; Vogelaers, D.; Blot, S. Effects of chlorhexidine gluconate oral care on hospital mortality: A hospital-wide, observational cohort study. Intensive Care Med. 2018, 44, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Klompas, M.; Li, L.; Kleinman, K.; Szumita, P.M.; Massaro, A.F. Associations between ventilator bundle components and outcomes. JAMA Intern. Med. 2016, 176, 1277–1283. [Google Scholar] [CrossRef]
- Sozkes, S.; Sozkes, S. Use of toothbrushing in conjunction with chlorhexidine for preventing ventilator-associated pneumonia: A random-effect meta-analysis of randomized controlled trials. Int. J. Dent. Hyg. 2023, 21, 389–397. [Google Scholar] [CrossRef]
- Plantinga, N.L.; Wittekamp, B.H.J.; Leleu, K.; Depuydt, P.; Van den Abeele, A.; Brun-Buisson, C.; Bonten, M.J.M. Oral mucosal adverse events with chlorhexidine 2% mouthwash in ICU. Intensive Care Med. 2016, 42, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward chlorhexidine in oral bacteria—Is there cause for concern? Front. Microbiol. 2019, 10, 587. [Google Scholar]
- Kampf, G. Acquired resistance to chlorhexidine—Is it time to establish an ‘antiseptic stewardship’ initiative? J. Hosp. Infect. 2016, 94, 213–227. [Google Scholar] [CrossRef]
- Dale, C.M.; Rose, L.; Carbone, S.; Pinto, R.; Smith, O.M.; Burry, L.; Fan, E.; Amaral, A.C.K.; Mccredie, V.A.; Scales, D.C.; et al. Effect of oral chlorhexidine de-adoption and implementation of an oral care bundle on mortality for mechanically ventilated patients in the intensive care unit (CHORAL): A multi-center stepped wedge cluster-randomized controlled trial. Intensive Care Med. 2021, 47, 1295–1302. [Google Scholar] [CrossRef]
- Ehrenzeller, S.; Klompas, M. Association between daily toothbrushing and Hospital-Acquired pneumonia: A systematic review and Meta-Analysis. JAMA Intern. Med. 2024, 184, 131–142. [Google Scholar] [CrossRef]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control. Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Peng, Z.; He, C.; Zhang, C.; Hu, R. Effect of different mouthwashes on ventilator-related outcomes and mortality in intensive care unit patients: A network meta-analysis. Aust. Crit. Care Off. J. Confed. Aust. Crit. Care Nurses 2025, 38, 101095. [Google Scholar] [CrossRef]
- Rathbun, K.P.; Bourgault, A.M.; Sole, M.L. Oral microbes in Hospital-Acquired pneumonia: Practice and research implications. Crit. Care Nurse 2022, 42, 47–54. [Google Scholar] [CrossRef]
- Maciel, J.G.; Gomes, A.C.G.; Sugio, C.Y.; Garcia, A.A.; Zani, I.F.; Fernandes, M.H.; Soares, S.; Neppelenbroek, K.H. Denture biofilm increases respiratory diseases in the elderly. A mini-review. Am. J. Dent. 2024, 37, 288–292. [Google Scholar]
- Oostdijk, E.A.N.; Kesecioglu, J.; Schultz, M.J.; Visser, C.E.; de Jonge, E.; van Essen, E.H.R.; Bernards, A.T.; Purmer, I.; Brimicombe, R.; Bergmans, D.; et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: A randomized clinical trial. JAMA 2014, 312, 1429–1437. [Google Scholar] [CrossRef]
- Suddicu, I.F.T.A.; Cuthbertson, B.H.; Billot, L.; Campbell, M.K.; Daneman, N.; Davis, J.S.; Delaney, A.; Devaux, A.; Ferguson, N.D.; Finfer, S.R.; et al. Selective decontamination of the digestive tract during ventilation in the ICU. N. Engl. J. Med. 2025. ahead of print. [Google Scholar]
- Wittekamp, B.H.; Plantinga, N.L.; Cooper, B.S.; Lopez-Contreras, J.; Coll, P.; Mancebo, J.; Wise, M.P.; Morgan, M.P.G.; Depuydt, P.; Boelens, J.; et al. Decontamination strategies and bloodstream infections with Antibiotic-Resistant microorganisms in ventilated patients: A randomized clinical trial. JAMA 2018, 320, 2087–2098. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, N.L.; Wittekamp, B.H.J.; Brun-Buisson, C.; Bonten, M.J.M. R-GNOSIS ICU Study Group The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gram-negative bacteria in ICU patients; A post hoc analysis from a multicentre cluster-randomized trial. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 26, 485–491. [Google Scholar]
- Wang, B.; Briegel, J.; Krueger, W.A.; Draenert, R.; Jung, J.; Weber, A.; Bogner, J.; Schubert, S.; Liebchen, U.; Frank, S.; et al. Ecological effects of selective oral decontamination on multidrug-resistance bacteria acquired in the intensive care unit: A case-control study over 5 years. Intensive Care Med. 2022, 48, 1165–1175. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
