Submitted:
20 January 2026
Posted:
22 January 2026
You are already at the latest version
Abstract
Keywords:
Introduction
Development
Methodology
Discussion
Final Considerations
References
- BRAAK, H.; BRAAK, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica 1991, v. 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- GORIOUNOVA, Natalia A.; MANSVELDER, Huibert D. Genes, cells and brain areas of intelligence. Frontiers in Human Neuroscience 2019, vol. 13, 44. [Google Scholar] [CrossRef] [PubMed]
- GÓMEZ-ISLA, T.; et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer 's disease. Annals of Neurology 1997, vol. 41(no. 1), 17–24. [Google Scholar] [CrossRef] [PubMed]
- GENGLER, S.; GAULT, VA; HARRIOTT, P.; HÖLSCHER, C. Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25-35) are dependent on stimulation-protocol and genetic background. Experimental brain research 2007, 179(4), 621–630. [Google Scholar] [CrossRef] [PubMed]
- ZHENG, J.; AKBARI, M.; SCHIRMER, C.; REYNAERT, ML; LOYENS, A.; LEFEBVRE, B.; BUÉE, L.; CROTEAU, DL; GALAS, MC; BOHR, VA. Hippocampal tau oligomerization early in tau pathology coincides with a transient alteration of mitochondrial homeostasis and DNA repair in a mouse model of tauopathy. Acta neuropathologica communications 2020, 8(1), 25. [Google Scholar] [CrossRef] [PubMed]
- SCHNEIDER, F.; CLAUSSEN, MC; FEIL, J.; et al. Reduced cholinergic input to the hippocampus impairs adult neurogenesis in the rat dentate gyrus. Neuroscience Available at. 2009, vol. 159(no. 3), 996–1007. (accessed on 7 April. 2025). [Google Scholar] [CrossRef]
- SCHMIDT, SD; MORAES, FB; BERGMANN, JH; et al. Cholinergic dysfunction and oxidative stress in the hippocampus of aged rats. Brain Research Available at. 2013, vol. 1512, 85–92. (accessed on 7 April. 2025). [Google Scholar] [CrossRef]
- SERRANO-POZO, A.; et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 2011, vol. 1(no. 1), a006189. [Google Scholar] [CrossRef] [PubMed]
- MUSARÓ, A.; FULGENTIUS, V.; RINALDI, F.; et al. Cholinergic system during the progression of Alzheimer's disease. Journal of Neurology 2023, vol. 270(no. 3), 1440–1450. [Google Scholar]
- SQUIRE, L.R.; GWIORNER, JT; ZOLA, SM. The Medial Temporal Lobe Memory System. Science 1991, vol. 253(n. 5026), 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- MOURÃ OJ ÚNIOR, Carlos Alberto; MELO, Luciene Bandeira Rodrigues. Integration of three concepts: executive function, working memory and learning. Psychology: Theory and Research 2009, v. 25(n. 4), 507–515. Available online: https://www.scielo.br/j/ptp/a/6DKfm4zCwjc6QRtrXGqjGtQ (accessed on 7 April 2025).
- da SILVA, Ana Carolina Morais; et al. Alterations in the anterior cingulate cortex as a predictor of response to treatment in patients with obsessive-compulsive disorder. Brazilian Journal of Psychiatry 2008, v. 57(n. 3), 231–238. Available online: https://www.scielo.br/j/jbpsiq/a/F7YnymWShLwV6q3ccgZDKQP (accessed on 7 April 2025).
- HAAVIK, Jan; TOSKA, Kristin. Tyrosine Hydroxylase and Parkinson 's Disease. Molecular Neurobiology 1998, vol. 16(no. 3), 285–309. [Google Scholar] [CrossRef] [PubMed]
- CHO, Soon-Tae; et al. The main features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 2004, vol. 74, 1–58. Available online: https://pubmed.ncbi.nlm.nih.gov/15381316/.
- MORIKAWA, Masayuki; KIUCHI, Kuniaki; TAOKA, Toshiaki; NAGAUCHI, Kiyoyuki; KICHIKAWA, Kimihiko; KISHIMOTO, Toshifumi. Uncinate fasciculus-correlated cognition in Alzheimer's disease: a diffusion tensor imaging study by tractography. Psychogeriatrics 2010, vol. 10(no. 1), 15–20. [Google Scholar] [CrossRef] [PubMed]
- KANDIMALLA, Ramesh; RAO, Koteswara; RANGANATHAN, Latchupatula V. Therapeutics of Neurotransmitters in Alzheimer's Disease. Journal of Alzheimer's Disease 2011, vol. 2(no. 2), 85–100. Available online: https://pubmed.ncbi.nlm.nih.gov/28211810/. [CrossRef] [PubMed]
- HE, Yifan; et al. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease. Neuroscience & Biobehavioral Reviews 2024, vol. 150, 105–120. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
