Submitted:
21 January 2026
Posted:
22 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Pure Ni Nanoparticles
3.2. Core-Shell NiTi Nanoparticles

4. Discussion

5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Tailor, G.; Chaudhary, J.; Jandu, S.; Chetna; Mehta, C.; Yadav, M.; Verma, D. A review on green route synthesized nickel nanoparticles: Biological and photo-catalytic applications. Results Chem. 2023, 6, 101195. [Google Scholar] [CrossRef]
- Bibi, I.; Kamal, S.; Ahmed, A.; Iqbal, M.; Nouren, S.; Jilani, K.; et al. Nickel nanoparticle synthesis using Camellia sinensis as reducing and capping agent: Growth mechanism and photocatalytic activity evaluation. Int. J. Biol. Macromol. 2017, 103, 783–790. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, M.; Zhai, M.; Yu, Y.; Hu, J. Nickel nanoparticles anchored onto Ni foam for supercapacitors with high specific capacitance. J. Nanosci. Nanotechnol. 2020, 20, 2402–2407. [Google Scholar] [CrossRef] [PubMed]
- Reena Mary, A.P.; Suchand Sandeep, C.S.; Narayanan, T.N.; Philip, R.; Moloney, P.; Ajayan, P.M.; et al. Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles. Materials 2011, 22, 375702. [Google Scholar] [CrossRef] [PubMed]
- Bârsan, M.M.; Enache, T.A.; Preda, N.; Stan, G.; Apostol, N.G.; Matei, E.; et al. Direct immobilization of biomolecules through magnetic forces on Ni electrodes via Ni nanoparticles: Applications in electrochemical biosensors. ACS Appl. Mater. Interfaces 2019, 11, 19867–19877. [Google Scholar] [CrossRef]
- Hill, D.; Barron, A.R.; Alexander, S. Comparison of hydrophobicity and durability of functionalized aluminium oxide nanoparticle coatings with magnetite nanoparticles: Links between morphology and wettability. J. Colloid Interface Sci. 2019, 555, 323–330. [Google Scholar] [CrossRef]
- Jaji, N.; Lee, H.L.; Hussin, M.H.; Akil, H.M.; Zakaria, M.R.; Othman, M.B.H. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol. Rev. 2020, 9, 1456–1480. [Google Scholar] [CrossRef]
- Nik Roselina, N.R.; Azizan, A. Ni nanoparticles: Study of particle formation and agglomeration. Procedia Eng. 2012, 41, 1620–1626. [Google Scholar] [CrossRef]
- Tsyganov, S.; Kästner, J.; Rellinghaus, B.; Kauffeldt, T.; Westerhoff, F.; Wolf, D. Analysis of Ni nanoparticle gas phase sintering. Phys. Rev. B 2007, 75, 045421. [Google Scholar] [CrossRef]
- Bajtošová, L.; Kihoulou, B.; Králík, R.; Hanuš, J.; Cieslar, M. Nickel nanoparticles: Insights into sintering dynamics. Crystals 2024, 14, 321. [Google Scholar] [CrossRef]
- Wang, H.; Lu, J. A review on particle size effect in metal-catalyzed heterogeneous reactions. Chin. J. Chem. 2020. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef]
- Patange, M.; Biswas, S. Structural stability and magnetic properties of Ni nanoparticles with an in situ formed surface stabilization layer of graphitic carbon. Mater. Res. Bull. 2024, 169, 112509. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, Q.; Wang, X.; Zheng, J.; Li, X. MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 156–164. [Google Scholar] [CrossRef]
- Manukyan, A.S.; Mirzakhanyan, A.A.; Badalyan, G.R.; et al. Preparation and characterization of nickel nanoparticles in different carbon matrices. J. Contemp. Phys. 2010, 45, 132–136. [Google Scholar] [CrossRef]
- El-Gendy, A.A.; Ibrahim, E.M.M.; Khavrus, V.O.; Krupskaya, Y.; Hampel, S.; Leonhardt, A.; et al. The synthesis of carbon-coated Fe, Co, and Ni nanoparticles and an examination of their magnetic properties. Carbon 2009, 47, 2821–2828. [Google Scholar] [CrossRef]
- Ding, D.; Wei, W.; He, X.; Ding, S. Thermally stable Ni@SiO₂ core–shell nanoparticles for high-temperature solar selective absorber. Sol. Energy 2021, 228, 413–417. [Google Scholar] [CrossRef]
- Baktash, E.; Littlewood, P.; Schomäcker, R.; Thomas, A.; Stair, P.C. Alumina-coated nickel nanoparticles as a highly active catalyst for dry reforming of methane. Appl. Catal. B 2015, 179, 122–127. [Google Scholar] [CrossRef]
- Hanuš, J.; Kihoulou, B.; Králík, R.; et al. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D: Appl. Phys. 2017, 50, 475307. [Google Scholar] [CrossRef]
- Stadelmann, P.A. EMS — a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 1987, 21, 131–145. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; 't Veld, P.J. in 't; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; Shan, R.; Stevens, M.J.; Tranchida, J.; Trott, C.; Plimpton, S.J. LAMMPS: A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Matsui, M.; Akaogi, M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO₂. Mol. Simul. 1991, 6, 239–244. [Google Scholar] [CrossRef]
- Reinhardt, A. Phase behavior of empirical potentials of titanium dioxide. J. Chem. Phys. 2019, 151, 064505. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Matsuno, M.; Bonifacio, C.; Thron, A.; Rufner, J.; Holland, T.; van Benthem, K. In situ sintering of Ni nanoparticles by controlled heating. Microsc. Microanal. 2011, 17, 524–525. [Google Scholar] [CrossRef]
- Tomoshige, R.; Kato, A.; Nagashima, K. Sinterability of TiO₂-coated fine Ni powder. Ceram. Int. 2006, 32, 221–222. [Google Scholar] [CrossRef]
- Li, X.-Y.; Wei, G.-L.; Shen, N.-R.; Wang, Y.-L.; Dong, X.-L.; Jung, Y. Synthesis and characterization of Ni@TiO₂ nanocapsules for RF-MLCC electrodes via DC arc plasma method. Mater. Sci. Eng. B 2025, 311, 117861. [Google Scholar] [CrossRef]
- Kim, S.; Armutlulu, A.; Liao, W.-C.; Hosseini, D.; Stoian, D.; Chen, Z.; Abdala, P.M.; Copéret, C.; Müller, C.R. Structural insight into an atomic layer deposition (ALD) grown Al₂O₃ layer on Ni/SiO₂: Impact on catalytic activity and stability in dry reforming of methane. Catal. Sci. Technol. 2021, 11, 6496–6507. [Google Scholar] [CrossRef]
- Ding, D.; Wei, W.; He, X.; Ding, S. Thermally stable Ni@SiO₂ core–shell nanoparticles for high-temperature solar selective absorber. Sol. Energy 2021, 228, 413–417. [Google Scholar] [CrossRef]
- Rahbar, H. Sintering rate of nickel nanoparticles by molecular dynamics. J. Phys. Chem. 2023. [Google Scholar] [CrossRef]
- Buesser, B.; Gröhn, A. J.; Pratsinis, S. E. Sintering rate and mechanism of TiO₂ nanoparticles by molecular dynamics. J. Phys. Chem. C 2011, 115(22), 10983–10991. [Google Scholar] [CrossRef]
- Kobata, A.; Kusakabe, K.; Morooka, S. Growth and transformation of TiO₂ crystallites in an aerosol reactor. AIChE J. 1991, 37, 347–354. [Google Scholar] [CrossRef]
- Seto, T.; Shimada, M.; Okuyama, K. Evaluation of sintering of nanometer-sized titania using an aerosol method. Aerosol Sci. Technol. 1995, 23, 183–200. [Google Scholar] [CrossRef]
- Kirby, R.K. Thermal expansion of rutile from 100 to 700 K. J. Res. Natl. Bur. Stand. A 1967, 71A, 363–369. [Google Scholar] [CrossRef]
- Touloukian, Y.S. Thermal Expansion: Metallic Elements and Alloys; Springer: New York, NY, USA, 1975. [Google Scholar]
- Wachtman, J. B., Jr.; Tefft, W. E.; Lam, D. G., Jr. Elastic constants of rutile (TiO₂). J. Res. Natl. Bur. Stand. A Phys. Chem. 1962, 66A(6), 465–471. [Google Scholar] [CrossRef]
- Ledbetter, H. M.; Reed, R. P. Elastic properties of metals and alloys, I. Iron, nickel, and iron–nickel alloys. J. Phys. Chem. Ref. Data 1973, 2(3), 531–618. [Google Scholar] [CrossRef]
- Pandey, V.; Kumar, M. Development of size- and shape-dependent model for bulk modulus from bulk to nanoscale. Physica B Condens. Matter 2022, 629, 413617. [Google Scholar] [CrossRef]
- Lu, H.; Meng, X. Correlation between band gap, dielectric constant, Young's modulus, and melting temperature of GaN nanocrystals and their size and shape dependences. Sci. Rep. 2015, 5, 16939. [Google Scholar] [CrossRef]
- Rawat, K.; Goyal, M. Young's modulus and vibrational frequency dependence on shape and size in nanomaterials. Mater. Today Proc. 2021, 42, 1633–1637. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).