Submitted:
21 January 2026
Posted:
21 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Regulation of TDP-43 Monomer Accumulation via UPS Activation
2.1. The Role of Ubiquitination
2.2. Other Strategies Involving the UPS
3. Molecular Mechanisms of TDP-43 Clearance via Autophagy
3.1. Macroautophagy Pathway
3.2. Chaperone-Mediated Autophagy (CMA)
3.3. TFEB-Mediated Lysosomal Biogenesis
4. Pharmacological Autophagy Enhancers: Preclinical Evidence
4.1. mTOR-Dependent Autophagy Inducers
4.1.1. Rapamycin and Rapalogs
4.1.2. Monepantel
4.2. mTOR-Independent Autophagy Inducers
4.2.1. Trehalose
4.2.2. Ibudilast
4.3. Small Molecule TFEB Activators
4.4. Kinase Inhibitors with Autophagy-Enhancing Properties
4.4.1. Bosutinib
4.4.2. Withaferin-A and Analogs
5. Natural Compounds and Polyphenols
5.1. Curcumin
5.2. EGCG
5.3. Metformin
5.4. Resveratrol
6. Advanced Therapeutic Modalities
6.1. Proteolysis-Targeting Chimeras (PROTACs)
6.2. Antisense Oligonucleotides (ASOs)
6.3. Gene Therapy Approaches
6.4. Kinase Modulators and Signal Transduction
7. Challenges and Considerations
8. Conclusions
Author
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| AAV | Adeno-associated virus |
| ALP | Autophagy–lysosome pathway |
| ALS | Amyotrophic lateral sclerosis |
| ALSFRS-R | ALS Functional Rating Scale–Revised |
| AMPK | AMP-activated protein kinase |
| APP/PS1 | Amyloid precursor protein / presenilin-1 double-transgenic AD mouse model |
| ARpolyQ | Androgen receptor with an elongated polyglutamine tract |
| ASO | Antisense oligonucleotide |
| ATG | Autophagy-related gene/protein (e.g., ATG5, ATG9B) |
| BTA | Benzothiazole–aniline (TDP-43-binding scaffold in PROTACs) |
| CCH | Chronic cerebral hypoperfusion |
| CLEAR | Coordinated lysosomal expression and regulation |
| CML | Chronic myelogenous leukemia |
| CMA | Chaperone-mediated autophagy |
| COPD | Chronic obstructive pulmonary disease |
| CRBN | Cereblon |
| CSF | Cerebrospinal fluid |
| DPR | Dipeptide repeat |
| DUB | Deubiquitinase |
| ENAs | 2’-O,4’-C-ethylene nucleic acids |
| ERK | Extracellular signal-regulated kinase |
| ERK1/2 | Extracellular signal-regulated kinase 1/2 |
| ESCRT | Endosomal sorting complexes required for transport |
| FTD | Frontotemporal dementia |
| FTLD | Frontotemporal lobar degeneration |
| FTLD-U | Frontotemporal lobar degeneration with ubiquitin-positive inclusions |
| GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
| GSK3β | Glycogen synthase kinase-3 beta |
| HDAC6 | Histone deacetylase 6 |
| HO-1 | Heme oxygenase-1 |
| Hsc70 | Heat shock cognate 70 kDa protein |
| HTT | Huntingtin protein |
| IKK | IκB kinase |
| IKKβ | IκB kinase beta |
| IVSA | In vivo self-assembled (siRNA platform, context-specific) |
| LAMP1 | Lysosome-associated membrane protein 1 |
| Lamp2A | Lysosome-associated membrane protein 2A |
| LATE | Limbic-predominant age-related TDP-43 encephalopathy |
| LATE-NC | LATE neuropathologic change |
| LC3 | Microtubule-associated protein 1 light chain 3 |
| LDH | Lactate dehydrogenase |
| MAPK | Mitogen-activated protein kinase |
| MDA | Malondialdehyde |
| MS | Multiple sclerosis |
| mTOR | Mechanistic target of rapamycin |
| mTORC1 | Mechanistic target of rapamycin complex 1 |
| NALL | N-acetyl-L-leucine |
| NEMO | NF-κB essential modulator |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NfL | Neurofilament light chain |
| NLK | Nemo-like kinase |
| NPC | Niemann–Pick disease type C |
| NeuN | Neuronal nuclei (RBFOX3; pan-neuronal marker) |
| PDE | Phosphodiesterase |
| PI3K | Phosphoinositide 3-kinase |
| PP2A | Protein phosphatase 2A |
| PROTAC | Proteolysis-targeting chimera |
| RGNEF | Rho guanine nucleotide exchange factor |
| RRM | RNA recognition motif |
| ROS | Reactive oxygen species |
| SCMAS | Subunit C of mitochondrial ATP synthase |
| SEV | Small extracellular vesicle |
| SIRT1 | Sirtuin 1 |
| SLCP | Solid lipid curcumin particles |
| SOD1 | Superoxide dismutase 1 |
| STMN2 | Stathmin-2 |
| TARDBP | Gene encoding TDP-43 |
| TDP-43 | Transactive response DNA-binding protein of 43 kDa |
| TFE3 | Transcription factor E3 |
| TFEB | Transcription factor EB |
| TREH | Trehalase |
| ULK1 | Unc-51-like kinase 1 |
| UPS | Ubiquitin–proteasome system |
References
- Ross, C.A.; Poirier, M.A. Protein Aggregation and Neurodegenerative Disease. Nat Med 2004, 10, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, L.; Zhang, Z. Protein Aggregation in Neurodegenerative Diseases. Chinese Medical Journal 2025, 138, 2753–2768. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, J.; Chen, T.; Cai, J.; Ren, R. Protein Aggregation and Its Affecting Mechanisms in Neurodegenerative Diseases. Neurochemistry International 2024, 180, 105880. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience 2019, 12. [Google Scholar] [CrossRef]
- Li, Q.; Pan, W.; Zhou, J.; Yu, H.; Xie, S. Targeting Protein Aggregation for the Treatment of Neurodegenerative Diseases. Medicine Plus 2024, 1, 100005. [Google Scholar] [CrossRef]
- Gorman, A.M. Neuronal Cell Death in Neurodegenerative Diseases: Recurring Themes around Protein Handling. J Cell Mol Med 2008, 12, 2263–2280. [Google Scholar] [CrossRef]
- Nelson, P.T.; Dickson, D.W.; Trojanowski, J.Q.; Jack, C.R.; Boyle, P.A.; Arfanakis, K.; Rademakers, R.; Alafuzoff, I.; Attems, J.; Brayne, C.; et al. Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE): Consensus Working Group Report. Brain 2019, 142, 1503–1527. [Google Scholar] [CrossRef]
- Jo, M.; Lee, S.; Jeon, Y.-M.; Kim, S.; Kwon, Y.; Kim, H.-J. The Role of TDP-43 Propagation in Neurodegenerative Diseases: Integrating Insights from Clinical and Experimental Studies. Exp Mol Med 2020, 52, 1652–1662. [Google Scholar] [CrossRef]
- Dhakal, S.; Wyant, C.E.; George, H.E.; Morgan, S.E.; Rangachari, V. Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. Journal of Molecular Biology 2021, 433, 166953. [Google Scholar] [CrossRef]
- Johnson, B.S.; Snead, D.; Lee, J.J.; McCaffery, J.M.; Shorter, J.; Gitler, A.D. TDP-43 Is Intrinsically Aggregation-Prone, and Amyotrophic Lateral Sclerosis-Linked Mutations Accelerate Aggregation and Increase Toxicity. J Biol Chem 2009, 284, 20329–20339. [Google Scholar] [CrossRef]
- Ling, S.-C.; Polymenidou, M.; Cleveland, D.W. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef]
- Tan, R.H.; Ke, Y.D.; Ittner, L.M.; Halliday, G.M. ALS/FTLD: Experimental Models and Reality. Acta Neuropathol 2017, 133, 177–196. [Google Scholar] [CrossRef]
- Waldron, F.M.; Spence, H.; Taso, O.S.; Read, F.L.; Sinha, I.R.; Irwin, K.E.; Wong, P.C.; Ling, J.P.; Gregory, J.M. Brain Iron as a Surrogate Biomarker of Pathological TDP-43 Identifies Brain Region-Specific Signatures in Ageing, Alzheimer’s Disease and Amyotrophic Lateral Sclerosis. 2025. [Google Scholar] [CrossRef]
- Wang, J.; Schneider, J.A.; Bennett, D.A.; Seyfried, N.T.; Young-Pearse, T.L.; Yang, H.-S. Plasma TDP-43 Is a Potential Biomarker for Advanced Limbic-Predominant Age-Related TDP-43 Encephalopathy Neuropathologic Change. Mol Neurodegener 2025, 20, 119. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Whitwell, J.L.; Weigand, S.D.; Murray, M.E.; Tosakulwong, N.; Liesinger, A.M.; Petrucelli, L.; Senjem, M.L.; Knopman, D.S.; Boeve, B.F.; et al. TDP-43 Is a Key Player in the Clinical Features Associated with Alzheimer’s Disease. Acta Neuropathol 2014, 127, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Fani, G.; Capitini, C.; Rusmini, P.; Poletti, A.; Cecchi, C.; Chiti, F. Quantitative Assessment of the Degradation of Aggregated TDP-43 Mediated by the Ubiquitin Proteasome System and Macroautophagy. The Faseb Journal 2017, 31, 5609–5624. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.; Bigio, E.H.; Cairns, N.J.; Neumann, M.; Mackenzie, I.R.A.; Mann, D.M.A. Mechanisms of Disease in Frontotemporal Lobar Degeneration: Gain of Function versus Loss of Function Effects. Acta Neuropathol 2012, 124, 373–382. [Google Scholar] [CrossRef]
- Lee, E.B.; Lee, V.M.-Y.; Trojanowski, J.Q. Gains or Losses: Molecular Mechanisms of TDP43-Mediated Neurodegeneration. Nat Rev Neurosci 2012, 13, 38–50. [Google Scholar] [CrossRef]
- Scotter, E.L.; Chen, H.-J.; Shaw, C.E. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015, 12, 352–363. [Google Scholar] [CrossRef]
- Budini, M.; Romano, V.; Quadri, Z.; Buratti, E.; Baralle, F.E. TDP-43 Loss of Cellular Function through Aggregation Requires Additional Structural Determinants beyond Its C-Terminal Q/N Prion-like Domain. Hum Mol Genet 2015, 24, 9–20. [Google Scholar] [CrossRef]
- Beckers, J.; Van Damme, P. The Role of Autophagy in the Pathogenesis and Treatment of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Autophagy Reports 2025, 4, 2474796. [Google Scholar] [CrossRef] [PubMed]
- Leibiger, C.; Deisel, J.; Aufschnaiter, A.; Ambros, S.; Tereshchenko, M.; Verheijen, B.M.; Büttner, S.; Braun, R.J. TDP-43 Controls Lysosomal Pathways Thereby Determining Its Own Clearance and Cytotoxicity. Human Molecular Genetics 2018, 27, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Oiwa, K.; Watanabe, S.; Onodera, K.; Iguchi, Y.; Kinoshita, Y.; Komine, O.; Sobue, A.; Okada, Y.; Katsuno, M.; Yamanaka, K. Monomerization of TDP-43 Is a Key Determinant for Inducing TDP-43 Pathology in Amyotrophic Lateral Sclerosis. Sci Adv 2023, 9, eadf6895. [Google Scholar] [CrossRef]
- Babinchak, W.M.; Haider, R.; Dumm, B.K.; Sarkar, P.; Surewicz, K.; Choi, J.-K.; Surewicz, W.K. The Role of Liquid-Liquid Phase Separation in Aggregation of the TDP-43 Low-Complexity Domain. J Biol Chem 2019, 294, 6306–6317. [Google Scholar] [CrossRef]
- Haider, R.; Shipley, B.; Surewicz, K.; Hinczewski, M.; Surewicz, W.K. Pathological C-Terminal Phosphomimetic Substitutions Alter the Mechanism of Liquid-Liquid Phase Separation of TDP-43 Low Complexity Domain. bioRxiv 2024, 2024.03.21.586202. [Google Scholar] [CrossRef] [PubMed]
- Rabdano, S.O.; Izmailov, S.A.; Luzik, D.A.; Groves, A.; Podkorytov, I.S.; Skrynnikov, N.R. Onset of Disorder and Protein Aggregation Due to Oxidation-Induced Intermolecular Disulfide Bonds: Case Study of RRM2 Domain from TDP-43. Sci Rep 2017, 7, 11161. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Topp, S.D.; Hui, H.S.; Zacco, E.; Katarya, M.; McLoughlin, C.; King, A.; Smith, B.N.; Troakes, C.; Pastore, A.; et al. RRM Adjacent TARDBP Mutations Disrupt RNA Binding and Enhance TDP-43 Proteinopathy. Brain 2019, 142, 3753–3770. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Chiang, M.; Toh, E.K.-W.; Chang, C.-F.; Huang, T. Molecular Mechanism of Oxidation-Induced TDP-43 RRM1 Aggregation and Loss of Function. FEBS Lett 2013, 587, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tsekrekou, M.; Giannakou, M.; Papanikolopoulou, K.; Skretas, G. Protein Aggregation and Therapeutic Strategies in SOD1- and TDP-43- Linked ALS. Front Mol Biosci 2024, 11, 1383453. [Google Scholar] [CrossRef]
- Tran, N.-N.; Lee, B.-H. Functional Implication of Ubiquitinating and Deubiquitinating Mechanisms in TDP-43 Proteinopathies. Front. Cell Dev. Biol. 2022, 10, 931968. [Google Scholar] [CrossRef]
- Hans, F.; Fiesel, F.C.; Strong, J.C.; Jäckel, S.; Rasse, T.M.; Geisler, S.; Springer, W.; Schulz, J.B.; Voigt, A.; Kahle, P.J. UBE2E Ubiquitin-Conjugating Enzymes and Ubiquitin Isopeptidase Y Regulate TDP-43 Protein Ubiquitination. Journal of Biological Chemistry 2014, 289, 19164–19179. [Google Scholar] [CrossRef]
- Byrd, A.; Marmorale, L.; Addison, V.; Marcinowski, S.; Buchan, J.R. Rsp5/NEDD4 and ESCRT Regulate TDP-43 Toxicity and Turnover via an Endolysosomal Clearance Mechanism 2022.
- Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; et al. Pyrazolone Structural Motif in Medicinal Chemistry: Retrospect and Prospect. Eur J Med Chem 2020, 186, 111893. [Google Scholar] [CrossRef] [PubMed]
- Benmohamed, R.; Arvanites, A.C.; Kim, J.; Ferrante, R.J.; Silverman, R.B.; Morimoto, R.I.; Kirsch, D.R. Identification of Compounds Protective against G93A-SOD1 Toxicity for the Treatment of Amyotrophic Lateral Sclerosis. Amyotroph Lateral Scler 2011, 12, 87–96. [Google Scholar] [CrossRef]
- Trippier, P.C.; Zhao, K.T.; Fox, S.G.; Schiefer, I.T.; Benmohamed, R.; Moran, J.; Kirsch, D.R.; Morimoto, R.I.; Silverman, R.B. Proteasome Activation Is a Mechanism for Pyrazolone Small Molecules Displaying Therapeutic Potential in Amyotrophic Lateral Sclerosis. ACS Chem. Neurosci. 2014, 5, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kwon, Y.; Kim, S.; Jo, M.; Jeon, Y.-M.; Cheon, M.; Lee, S.; Kim, S.R.; Kim, K.; Kim, H.-J. The Role of HDAC6 in TDP-43-Induced Neurotoxicity and UPS Impairment. Front Cell Dev Biol 2020, 8, 581942. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Y.; Hu, F. IκB Kinase Thwarts Aggregation: Phosphorylating TDP-43 for Degradation. The Journal of Cell Biology 2024, 223. [Google Scholar] [CrossRef]
- Iguchi, Y.; Takahashi, Y.; Li, J.; Araki, K.; Amakusa, Y.; Kawakami, Y.; Kobayashi, K.; Yokoi, S.; Katsuno, M. IκB Kinase Phosphorylates Cytoplasmic TDP-43 and Promotes Its Proteasome Degradation. J Cell Biol 2024, 223, e202302048. [Google Scholar] [CrossRef]
- Dalton, C.; Mojsilovic-Petrovic, J.; Safren, N.; Snoznik, C.; Gebis, K.K.; Wang, Y.-Z.; Lamitina, T.; Savas, J.N.; Kalb, R.G. Ubiquitin Proteasome System Components, RAD23A and USP13, Modulate TDP-43 Solubility and Neuronal Toxicity 2025.
- Caccamo, A.; Majumder, S.; Deng, J.J.; Bai, Y.; Thornton, F.B.; Oddo, S. Rapamycin Rescues TDP-43 Mislocalization and the Associated Low Molecular Mass Neurofilament Instability. J Biol Chem 2009, 284, 27416–27424. [Google Scholar] [CrossRef]
- Cuervo, A.M.; Bergamini, E.; Brunk, U.T.; Dröge, W.; Ffrench, M.; Terman, A. Autophagy and Aging: The Importance of Maintaining “Clean” Cells. Autophagy 2005, 1, 131–140. [Google Scholar] [CrossRef]
- Martinez-Vicente, M.; Cuervo, A.M. Autophagy and Neurodegeneration: When the Cleaning Crew Goes on Strike. The Lancet Neurology 2007, 6, 352–361. [Google Scholar] [CrossRef]
- Barmada, S.J.; Serio, A.; Arjun, A.; Bilican, B.; Daub, A.; Ando, D.M.; Tsvetkov, A.; Pleiss, M.; Li, X.; Peisach, D.; et al. Autophagy Induction Enhances TDP43 Turnover and Survival in Neuronal ALS Models. Nat Chem Biol 2014, 10, 677–685. [Google Scholar] [CrossRef]
- Ormeño, F.; Hormazabal, J.; Moreno, J.; Riquelme, F.; Rios, J.; Criollo, A.; Albornoz, A.; Alfaro, I.E.; Budini, M. Chaperone Mediated Autophagy Degrades TDP-43 Protein and Is Affected by TDP-43 Aggregation. Front. Mol. Neurosci. 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Dice, J.F. Peptide Sequences That Target Cytosolic Proteins for Lysosomal Proteolysis. Trends Biochem Sci 1990, 15, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Kiffin, R.; Christian, C.; Knecht, E.; Cuervo, A.M. Activation of Chaperone-Mediated Autophagy during Oxidative Stress. Mol Biol Cell 2004, 15, 4829–4840. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.M.; Hildebrand, H.; Bomhard, E.M.; Dice, J.F. Direct Lysosomal Uptake of Alpha 2-Microglobulin Contributes to Chemically Induced Nephropathy. Kidney Int 1999, 55, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Isenman, L.D.; Dice, J.F. Secretion of Intact Proteins and Peptide Fragments by Lysosomal Pathways of Protein Degradation. J Biol Chem 1989, 264, 21591–21596. [Google Scholar] [CrossRef]
- Wing, S.S.; Chiang, H.L.; Goldberg, A.L.; Dice, J.F. Proteins Containing Peptide Sequences Related to Lys-Phe-Glu-Arg-Gln Are Selectively Depleted in Liver and Heart, but Not Skeletal Muscle, of Fasted Rats. Biochemical Journal 1991, 275, 165–169. [Google Scholar] [CrossRef]
- Huang, C.-C.; Bose, J.K.; Majumder, P.; Lee, K.-H.; Huang, J.-T.J.; Huang, J.K.; Shen, C.-K.J. Metabolism and Mis-Metabolism of the Neuropathological Signature Protein TDP-43. J Cell Sci 2014, 127, 3024–3038. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.M.; Terlecky, S.R.; Dice, J.F.; Knecht, E. Selective Binding and Uptake of Ribonuclease A and Glyceraldehyde-3-Phosphate Dehydrogenase by Isolated Rat Liver Lysosomes. J Biol Chem 1994, 269, 26374–26380. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Wang, H.; Hao, Z.; Fu, C.; Hu, Q.; Gao, F.; Ren, H.; Chen, D.; Han, J.; Ying, Z.; et al. TDP-43 Loss of Function Increases TFEB Activity and Blocks Autophagosome-Lysosome Fusion. EMBO J 2016, 35, 121–142. [Google Scholar] [CrossRef]
- Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef]
- Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; et al. TFEB Links Autophagy to Lysosomal Biogenesis. Science 2011, 332, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.H.; Ro, S.-H.; Cao, J.; Otto, N.M.; Kim, D.-H. mTOR Regulation of Autophagy. FEBS Lett 2010, 584, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Guan, K.-L. mTOR: A Pharmacologic Target for Autophagy Regulation. J Clin Invest 2015, 125, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, B.; Vacher, C.; Berger, Z.; Davies, J.E.; Luo, S.; Oroz, L.G.; Scaravilli, F.; Easton, D.F.; Duden, R.; O’Kane, C.J.; et al. Inhibition of mTOR Induces Autophagy and Reduces Toxicity of Polyglutamine Expansions in Fly and Mouse Models of Huntington Disease. Nat Genet 2004, 36, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.L.; Ravikumar, B.; Atkins, J.; Skepper, J.N.; Rubinsztein, D.C. Alpha-Synuclein Is Degraded by Both Autophagy and the Proteasome. J Biol Chem 2003, 278, 25009–25013. [Google Scholar] [CrossRef] [PubMed]
- Spilman, P.; Podlutskaya, N.; Hart, M.J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-Beta Levels in a Mouse Model of Alzheimer’s Disease. PLoS One 2010, 5, e9979. [Google Scholar] [CrossRef]
- Heiseke, A.; Aguib, Y.; Riemer, C.; Baier, M.; Schätzl, H.M. Lithium Induces Clearance of Protease Resistant Prion Protein in Prion-Infected Cells by Induction of Autophagy. J Neurochem 2009, 109, 25–34. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Chen, S.; Yang, D.; Wang, Y.; Zhang, X.; Wang, Z.; Le, W. Rapamycin Treatment Augments Motor Neuron Degeneration in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Autophagy 2011, 7, 412–425. [Google Scholar] [CrossRef]
- Bové, J.; Martínez-Vicente, M.; Vila, M. Fighting Neurodegeneration with Rapamycin: Mechanistic Insights. Nat Rev Neurosci 2011, 12, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Ling, D.; Song, H.-J.; Garza, D.; Neufeld, T.P.; Salvaterra, P.M. Abeta42-Induced Neurodegeneration via an Age-Dependent Autophagic-Lysosomal Injury in Drosophila. PLoS ONE 2009, 4, e4201. [Google Scholar] [CrossRef]
- Zhang, S.; Salemi, J.; Hou, H.; Zhu, Y.; Mori, T.; Giunta, B.; Obregon, D.; Tan, J. Rapamycin Promotes Beta-Amyloid Production via ADAM-10 Inhibition. Biochem Biophys Res Commun 2010, 398, 337–341. [Google Scholar] [CrossRef]
- Wang, I.-F.; Guo, B.-S.; Liu, Y.-C.; Wu, C.-C.; Yang, C.-H.; Tsai, K.-J.; Shen, C.-K.J. Autophagy Activators Rescue and Alleviate Pathogenesis of a Mouse Model with Proteinopathies of the TAR DNA-Binding Protein 43. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15024–15029. [Google Scholar] [CrossRef] [PubMed]
- Morselli, E.; Mariño, G.; Bennetzen, M.V.; Eisenberg, T.; Megalou, E.; Schroeder, S.; Cabrera, S.; Bénit, P.; Rustin, P.; Criollo, A.; et al. Spermidine and Resveratrol Induce Autophagy by Distinct Pathways Converging on the Acetylproteome. Journal of Cell Biology 2011, 192, 615–629. [Google Scholar] [CrossRef]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat Cell Biol 2009, 11, 1305–1314. [Google Scholar] [CrossRef]
- Büttner, S.; Eisenberg, T.; Carmona-Gutierrez, D.; Ruli, D.; Knauer, H.; Ruckenstuhl, C.; Sigrist, C.; Wissing, S.; Kollroser, M.; Fröhlich, K.-U.; et al. Endonuclease G Regulates Budding Yeast Life and Death. Molecular Cell 2007, 25, 233–246. [Google Scholar] [CrossRef]
- Vasconcelos-Ferreira, A.; Carmo-Silva, S.; Codêsso, J.M.; Silva, P.; Martinez, A.R.M.; França, M.C., Jr.; Nóbrega, C.; Pereira De Almeida, L. The Autophagy-enhancing Drug Carbamazepine Improves Neuropathology and Motor Impairment in Mouse Models of Machado–Joseph Disease. Neuropathology Appl Neurobio 2022, 48, e12763. [Google Scholar] [CrossRef] [PubMed]
- A Phase I Tolerability, Safety, Pharmacokinetics and Preliminary Efficacy Study of Oral Monepantel in Individuals With Motor Neurone Disease 2021.
- PhD, A.L. Vet Drug Monepantel Slows ALS, MND Disease Progression in Trial. Available online: https://alsnewstoday.com/news/vet-drug-monepantel-slows-als-mnd-disease-progression-trial/ (accessed on 12 December 2025).
- Limited, P. PharmAust Announces Positive Phase 1 MEND Study Top-Line Results in MND / ALS. Available online: https://www.prnewswire.com/news-releases/pharmaust-announces-positive-phase-1-mend-study-top-line-results-in-mnd--als-302074155.html (accessed on 31 December 2025).
- Bahrami, F.; Pourgholami, M.H.; Mekkawy, A.H.; Rufener, L.; Morris, D.L. Monepantel Induces Autophagy in Human Ovarian Cancer Cells through Disruption of the mTOR/p70S6K Signalling Pathway. Am J Cancer Res 2014, 4, 558–571. [Google Scholar] [PubMed]
- Cotton, I. PharmAust’s Monepantel Study Shows 58% Slowdown in MND Progression. Available online: https://smallcaps.com.au/article/pharmaust-monepantel-study-shows-slowdown-mnd-progression (accessed on 31 December 2025).
- Meglio, M. PharmaAust’s ALS Agent Monepantel Meets Primary End Point in Phase 1 Study | NeurologyLive - Clinical Neurology News and Neurology Expert Insights. Available online: https://www.neurologylive.com/view/pharmaaust-als-agent-monepantel-meets-primary-end-point-phase-1 (accessed on 31 December 2025).
- Neurizon Therapeutics Limited An Open Label Extension Study to Investigate the Long Term Safety, Tolerability And Efficacy of Oral Monepantel in Individuals With Motor Neurone Disease Who Previously Completed Study MON-2021-001; clinicaltrials.gov, 2025.
- Valenzuela, V.; Nassif, M.; Hetz, C. Unraveling the Role of Motoneuron Autophagy in ALS. Autophagy 2018, 14, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.M.; Jeyabalan, N.; Liton, P.B. MTOR-Independent Induction of Autophagy in Trabecular Meshwork Cells Subjected to Biaxial Stretch. Biochim Biophys Acta 2014, 1843, 1054–1062. [Google Scholar] [CrossRef]
- Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a Novel mTOR-Independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein *. Journal of Biological Chemistry 2007, 282, 5641–5652. [Google Scholar] [CrossRef]
- Chen, Q.; Haddad, G.G. Role of Trehalose Phosphate Synthase and Trehalose during Hypoxia: From Flies to Mammals. Journal of Experimental Biology 2004, 207, 3125–3129. [Google Scholar] [CrossRef] [PubMed]
- Welch, W.J.; Brown, C.R. Influence of Molecular and Chemical Chaperones on Protein Folding. Cell Stress Chaperones 1996, 1, 109–115. [Google Scholar] [CrossRef]
- Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N.R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose Alleviates Polyglutamine-Mediated Pathology in a Mouse Model of Huntington Disease. Nat Med 2004, 10, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, F.-T.; Wang, Y.-X.; Guan, R.-Y.; Chen, C.; Li, D.-K.; Bu, L.-L.; Song, J.; Yang, Y.-J.; Dong, Y.; et al. Autophagic Modulation by Trehalose Reduces Accumulation of TDP-43 in a Cell Model of Amyotrophic Lateral Sclerosis via TFEB Activation. Neurotox Res 2018, 34, 109–120. [Google Scholar] [CrossRef]
- Rusmini, P.; Cortese, K.; Crippa, V.; Cristofani, R.; Cicardi, M.E.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Meroni, M.; Messi, E.; et al. Trehalose Induces Autophagy via Lysosomal-Mediated TFEB Activation in Models of Motoneuron Degeneration. Autophagy 2018, 15, 631–651. [Google Scholar] [CrossRef]
- Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; et al. Lysosomal Calcium Signalling Regulates Autophagy through Calcineurin and TFEB. Nat Cell Biol 2015, 17, 288–299. [Google Scholar] [CrossRef]
- Gudmand-Høyer, E.; Fenger, H.J.; Skovbjerg, H.; Kern-Hansen, P.; Madsen, P.R. Trehalase Deficiency in Greenland. Scand J Gastroenterol 1988, 23, 775–778. [Google Scholar] [CrossRef]
- Yoon, Y.-S.; Cho, E.-D.; Jung Ahn, W.; Won Lee, K.; Lee, S.-J.; Lee, H.-J. Is Trehalose an Autophagic Inducer? Unraveling the Roles of Non-Reducing Disaccharides on Autophagic Flux and Alpha-Synuclein Aggregation. Cell Death Dis 2017, 8, e3091–e3091. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.T.; Karaca, I.; Tamboli, I.Y.; Walter, J. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-Associated Amyloid Precursor Protein. J Biol Chem 2016, 291, 10528–10540. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Ying, Z.; Gao, Q. Ibudilast Enhances the Clearance of SOD1 and TDP-43 Aggregates through TFEB-Mediated Autophagy and Lysosomal Biogenesis: The New Molecular Mechanism of Ibudilast and Its Implication for Neuroprotective Therapy. Biochemical and Biophysical Research Communications 2020, 526, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Mokra, D.; Mokry, J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int J Mol Sci 2021, 22, 1929. [Google Scholar] [CrossRef] [PubMed]
- Kawamatawong, T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front. Pharmacol. 2021, 12, 518345. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, A.; Varshosaz, J.; Darash, S.; Ebne-Ali-Heydari, Y. A Comprehensive Systematic Review of Ibudilast as a Neuroprotective Therapy for Progressive Multiple Sclerosis. Multiple Sclerosis and Related Disorders 2025, 104, 106807. [Google Scholar] [CrossRef]
- MS, M.W. MN-166 (Ibudilast) for ALS | ALS News Today.
- Chun, Y.S.; Kim, M.-Y.; Lee, S.-Y.; Kim, M.J.; Hong, T.-J.; Jeon, J.K.; Ganbat, D.; Kim, H.T.; Kim, S.S.; Kam, T.-I.; et al. MEK1/2 Inhibition Rescues Neurodegeneration by TFEB-Mediated Activation of Autophagic Lysosomal Function in a Model of Alzheimer’s Disease. Mol Psychiatry 2022, 27, 4770–4780. [Google Scholar] [CrossRef]
- Lin, J.; Yuan, Y.; Huang, C.; Zi, J.; Li, L.; Liu, J.; Wu, X.; Li, W.; Zhao, Q.; Li, Y.; et al. TFEB Agonist Clomiphene Citrate Activates the Autophagy-Lysosomal Pathway and Ameliorates Alzheimer’s Disease Symptoms in Mice. Journal of Biological Chemistry 2024, 300, 107929. [Google Scholar] [CrossRef]
- Carling, P.J.; Ryan, B.J.; McGuinness, W.; Kataria, S.; Humble, S.W.; Milde, S.; Duce, J.A.; Kapadia, N.; Zuercher, W.J.; Davis, J.B.; et al. Multiparameter Phenotypic Screening for Endogenous TFEB and TFE3 Translocation Identifies Novel Chemical Series Modulating Lysosome Function. Autophagy 2023, 19, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.C.; Brain, R.; Churchill, G.; Factor, M.; Fields, T.; Platt, F.; Patterson, M.; Strupp, M.; Galione, A. Stereospecific Rapid Activation of Transcription Factor EB (TFEB) by Levacetylleucine (NALL) 2025.
- Lee, J.W.; Park, S.; Takahashi, Y.; Wang, H.-G. The Association of AMPK with ULK1 Regulates Autophagy. PLOS ONE 2010, 5, e15394. [Google Scholar] [CrossRef] [PubMed]
- Deleyto-Seldas, N.; Efeyan, A. The mTOR–Autophagy Axis and the Control of Metabolism. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef]
- Imamura, K.; Izumi, Y.; Watanabe, A.; Tsukita, K.; Woltjen, K.; Yamamoto, T.; Hotta, A.; Kondo, T.; Kitaoka, S.; Ohta, A.; et al. The Src/c-Abl Pathway Is a Potential Therapeutic Target in Amyotrophic Lateral Sclerosis. Science Translational Medicine 2017, 9, eaaf3962. [Google Scholar] [CrossRef] [PubMed]
- Imamura, K.; Izumi, Y.; Nagai, M.; Nishiyama, K.; Watanabe, Y.; Hanajima, R.; Egawa, N.; Ayaki, T.; Oki, R.; Fujita, K.; et al. Safety and Tolerability of Bosutinib in Patients with Amyotrophic Lateral Sclerosis (iDReAM Study): A Multicentre, Open-Label, Dose-Escalation Phase 1 Trial. eClinicalMedicine 2022, 53, 101707. [Google Scholar] [CrossRef]
- Carroll, E.; Scaber, J.; Huber, K.V.M.; Brennan, P.E.; Thompson, A.G.; Turner, M.R.; Talbot, K. Drug Repurposing in Amyotrophic Lateral Sclerosis (ALS). Expert Opinion on Drug Discovery 2025, 20, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Imamura, K.; Izumi, Y.; Egawa, N.; Ayaki, T.; Nagai, M.; Nishiyama, K.; Watanabe, Y.; Murakami, T.; Hanajima, R.; Kataoka, H.; et al. Protocol for a Phase 2 Study of Bosutinib for Amyotrophic Lateral Sclerosis Using Real-World Data: Induced Pluripotent Stem Cell-Based Drug Repurposing for Amyotrophic Lateral Sclerosis Medicine (iDReAM) Study. BMJ Open 2024, 14, e082142. [Google Scholar] [CrossRef] [PubMed]
- Center (APRC), A. and P.R. Leukemia Drug Decelerates Amyotrophic Lateral Sclerosis (ALS) Progression. Available online: https://sj.jst.go.jp/news/202408/n0801-01k.html (accessed on 12 December 2025).
- Kumar, S.; Phaneuf, D.; Julien, J.-P. Withaferin-A Treatment Alleviates TAR DNA-Binding Protein-43 Pathology and Improves Cognitive Function in a Mouse Model of FTLD. Neurotherapeutics 2021, 18, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; Thammisetty, S.S.; Boutej, H.; Bareil, C.; Julien, J.-P. Mitigation of ALS Pathology by Neuron-Specific Inhibition of Nuclear Factor Kappa B Signaling. J Neurosci 2020, 40, 5137–5154. [Google Scholar] [CrossRef]
- Thammisetty, S.S.; Renaud, L.; Picher-Martel, V.; Weng, Y.C.; Calon, F.; Saikali, S.; Julien, J.-P.; Kriz, J. Targeting TDP-43 Pathology Alleviates Cognitive and Motor Deficits Caused by Chronic Cerebral Hypoperfusion. Neurotherapeutics 2021, 18, 1095–1112. [Google Scholar] [CrossRef] [PubMed]
- Valério Romanini, C.; Dias Fiuza Ferreira, E.; Correia Bacarin, C.; Verussa, M.H.; Weffort de Oliveira, R.M.; Milani, H. Neurohistological and Behavioral Changes Following the Four-Vessel Occlusion/Internal Carotid Artery Model of Chronic Cerebral Hypoperfusion: Comparison between Normotensive and Spontaneously Hypertensive Rats. Behav Brain Res 2013, 252, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Novak, V.; Rogelj, B.; Župunski, V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021, 10, 1328. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yan, S.; Zhang, Z. Maintaining the Balance of TDP-43, Mitochondria, and Autophagy: A Promising Therapeutic Strategy for Neurodegenerative Diseases. Transl Neurodegener 2020, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Perrone, L.; Squillaro, T.; Napolitano, F.; Terracciano, C.; Sampaolo, S.; Melone, M.A.B. The Autophagy Signaling Pathway: A Potential Multifunctional Therapeutic Target of Curcumin in Neurological and Neuromuscular Diseases. Nutrients 2019, 11, 1881. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, X.; Pang, X.; Ma, K.; Li, L.; Song, Y.; Hou, D.; Wang, X. Pharmacological Effects, Molecular Mechanisms and Strategies to Improve Bioavailability of Curcumin in the Treatment of Neurodegenerative Diseases. Front. Pharmacol. 2025, 16. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Neuroprotective Effects of Curcumin through Autophagy Modulation. IUBMB Life 2020, 72, 652–664. [Google Scholar] [CrossRef]
- Frake, R.A.; Ricketts, T.; Menzies, F.M.; Rubinsztein, D.C. Autophagy and Neurodegeneration. J Clin Invest 2015, 125, 65–74. [Google Scholar] [CrossRef]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From Kitchen to Clinic. Biochem Pharmacol 2008, 75, 787–809. [Google Scholar] [CrossRef]
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma Longa) and Its Major Constituent (Curcumin) as Nontoxic and Safe Substances: Review. Phytotherapy Research 2018, 32, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Cicero, A.F.G.; Panahi, Y.; Mohajeri, M.; Sahebkar, A. Curcumin: A Naturally Occurring Autophagy Modulator. Journal of Cellular Physiology 2019, 234, 5643–5654. [Google Scholar] [CrossRef]
- Cashman, J.R.; Gagliardi, S.; Lanier, M.; Ghirmai, S.; Abel, K.J.; Fiala, M. Curcumins Promote Monocytic Gene Expression Related to β-Amyloid and Superoxide Dismutase Clearance. Neurodegener Dis 2012, 10, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-X.; Sun, Y.-R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J.-H.; Xu, Z.; Wang, M.-Z.; Liu, L.-F.; Huang, Y.-Y.; et al. A Novel Curcumin Analog Binds to and Activates TFEB in Vitro and in Vivo Independent of MTOR Inhibition. Autophagy 2016, 12, 1372–1389. [Google Scholar] [CrossRef] [PubMed]
- Majumder, P.; Hsu, T.-I.; Hu, C.-J.; Huang, J.K.; Lee, Y.-C.; Hsieh, Y.-C.; Ahsan, A.; Huang, C.-C. Potential Role of Solid Lipid Curcumin Particle (SLCP) as Estrogen Replacement Therapy in Mitigating TDP-43-Related Neuropathy in the Mouse Model of ALS Disease. Experimental Neurology 2025, 383, 114999. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhou, F.; Xiong, X.; Zhang, X.; Li, S.; Li, X.; Gao, M.; Li, Y. Enhancing the Retrograde Axonal Transport by Curcumin Promotes Autophagic Flux in N2a/APP695swe Cells. Aging (Albany NY) 2019, 11, 7036–7050. [Google Scholar] [CrossRef]
- Li, W.; Yao, S.; Li, H.; Meng, Z.; Sun, X. Curcumin Promotes Functional Recovery and Inhibits Neuronal Apoptosis after Spinal Cord Injury through the Modulation of Autophagy. J Spinal Cord Med 44 37–45. [CrossRef] [PubMed]
- Yang, L.; Shi, J.; Wang, X.; Zhang, R. Curcumin Alleviates D-Galactose-Induced Cardiomyocyte Senescence by Promoting Autophagy via the SIRT1/AMPK/mTOR Pathway. Evidence-Based Complementary and Alternative Medicine 2022, 2022, 2990843. [Google Scholar] [CrossRef] [PubMed]
- He, H.-J.; Xiong, X.; Zhou, S.; Zhang, X.-R.; Zhao, X.; Chen, L.; Xie, C.-L. Neuroprotective Effects of Curcumin via Autophagy Induction in 6-Hydroxydopamine Parkinson’s Models. Neurochemistry International 2022, 155, 105297. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Feng, J. The Neuroprotective Effects of Curcumin Are Associated with the Regulation of the Reciprocal Function between Autophagy and HIF-1α in Cerebral Ischemia-Reperfusion Injury. Drug Des Devel Ther 2019, 13, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- LI, X.; SUN, P.; ZHANG, D.; YAN, L. Curcumin in Vitro Neuroprotective Effects Are Mediated by P62/Keap-1/Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Physiol Res 2023, 72, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Luo, H.; Tang, J.; Ji, M.; Yu, D.; Yu, Q.; Cao, Z.; Mai, Y.; Zhang, B.; Chen, Y.; et al. Curcumin Inhibits Oxidative Stress and Autophagy in C17.2 Neural Stem Cell through ERK1/2 Signaling Pathways. Aging Med (Milton) 2024, 7, 559–570. [Google Scholar] [CrossRef]
- Duan, W.; Guo, Y.; Xiao, J.; Chen, X.; Li, Z.; Han, H.; Li, C. Neuroprotection by Monocarbonyl Dimethoxycurcumin C: Ameliorating the Toxicity of Mutant TDP-43 via HO-1. Mol Neurobiol 2014, 49, 368–379. [Google Scholar] [CrossRef]
- Duan, W.; Li, X.; Shi, J.; Guo, Y.; Li, Z.; Li, C. Mutant TAR DNA-Binding Protein-43 Induces Oxidative Injury in Motor Neuron-like Cell. Neuroscience 2010, 169, 1621–1629. [Google Scholar] [CrossRef]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiol Biomarkers Prev 2008, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent Advances to Improve Curcumin Oral Bioavailability. Trends in Food Science & Technology 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Curcumin Uptake and Metabolism - Metzler - 2013 - BioFactors - Wiley Online Library. Available online: https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.1042 (accessed on 7 January 2026).
- Olmos-Juste, R.; Alonso-Lerma, B.; Pérez-Jiménez, R.; Gabilondo, N.; Eceiza, A. 3D Printed Alginate-Cellulose Nanofibers Based Patches for Local Curcumin Administration. Carbohydrate Polymers 2021, 264, 118026. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, Q.; Qiu, C.; Wang, J.; Jin, Z.; Hu, Y. Encapsulation and Controlled Delivery of Curcumin by Self-Assembled Cyclodextrin Succinate/Chitosan Nanoparticles. Food Hydrocolloids 2024, 157, 110465. [Google Scholar] [CrossRef]
- Morando, M.A.; D’Alessandro, V.; Spinello, A.; Sollazzo, M.; Monaca, E.; Sabbatella, R.; Volpe, M.C.; Gervaso, F.; Polini, A.; Mizielinska, S.; et al. Epigallocatechin-3-Gallate Binds Tandem RNA Recognition Motifs of TDP-43 and Inhibits Its Aggregation. Sci Rep 2025, 15, 17879. [Google Scholar] [CrossRef]
- Meshram, V.D.; Balaji, R.; Saravanan, P.; Subbamanda, Y.; Deeksha, W.; Bajpai, A.; Joshi, H.; Bhargava, A.; Patel, B.K. Computational Insights Into the Mechanism of EGCG’s Binding and Inhibition of the TDP-43 Aggregation. Chem Biol Drug Des 2024, 104, e14640. [Google Scholar] [CrossRef]
- Holczer, M.; Besze, B.; Zámbó, V.; Csala, M.; Bánhegyi, G.; Kapuy, O. Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity 2018, 2018, 6721530. [Google Scholar] [CrossRef]
- Kim, H.-S.; Montana, V.; Jang, H.-J.; Parpura, V.; Kim, J. Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells. J Biol Chem 2013, 288, 22693–22705. [Google Scholar] [CrossRef] [PubMed]
- Buzzai, M.; Jones, R.G.; Amaravadi, R.K.; Lum, J.J.; DeBerardinis, R.J.; Zhao, F.; Viollet, B.; Thompson, C.B. Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs P53-Deficient Tumor Cell Growth. Cancer Res 2007, 67, 6745–6752. [Google Scholar] [CrossRef]
- Amin, S.; Lux, A.; O’Callaghan, F. The Journey of Metformin from Glycaemic Control to mTOR Inhibition and the Suppression of Tumour Growth. British Journal of Clinical Pharmacology 2019, 85, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; Schmitz, G. Metformin: An Inhibitor of mTORC1 Signaling. Journal of Endocrinology, Diabetes and Obesity 2014, 2, 1–15. [Google Scholar] [CrossRef]
- Ben Sahra, I.; Regazzetti, C.; Robert, G.; Laurent, K.; Le Marchand-Brustel, Y.; Auberger, P.; Tanti, J.-F.; Giorgetti-Peraldi, S.; Bost, F. Metformin, Independent of AMPK, Induces mTOR Inhibition and Cell-Cycle Arrest through REDD1. Cancer Res 2011, 71, 4366–4372. [Google Scholar] [CrossRef]
- Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; et al. Metformin Treatment Prevents Amyloid Plaque Deposition and Memory Impairment in APP/PS1 Mice. Brain, Behavior, and Immunity 2018, 69, 351–363. [Google Scholar] [CrossRef]
- Ng, T.P.; Feng, L.; Yap, K.B.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-Term Metformin Usage and Cognitive Function among Older Adults with Diabetes. Journal of Alzheimer’s Disease 2014, 41, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Chin-Hsiao, T. Metformin and the Risk of Dementia in Type 2 Diabetes Patients. Aging and disease 2019, 10, 37–48. [Google Scholar] [CrossRef]
- Sluggett, J.K.; Koponen, M.; Bell, J.S.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Uusitupa, M.; Tolppanen, A.-M.; Hartikainen, S. Metformin and Risk of Alzheimer’s Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. J Clin Endocrinol Metab 2020, 105, e963–e972. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, P.; Bodmer, M.; Jick, S.S.; Meier, C.R. Metformin, Other Antidiabetic Drugs, and Risk of Alzheimer’s Disease: A Population-Based Case–Control Study. Journal of the American Geriatrics Society 2012, 60, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Choi, D.-W.; Kim, K.J.; Cho, S.Y.; Kim, H.; Kim, K.Y.; Koh, Y.; Nam, C.M.; Kim, E. Association of Metformin Use with Alzheimer’s Disease in Patients with Newly Diagnosed Type 2 Diabetes: A Population-Based Nested Case–Control Study. Sci Rep 2021, 11, 24069. [Google Scholar] [CrossRef]
- Ondaro, J.; Hernandez-Eguiazu, H.; Garciandia-Arcelus, M.; Loera-Valencia, R.; Rodriguez-Gómez, L.; Jiménez-Zúñiga, A.; Goikolea, J.; Rodriguez-Rodriguez, P.; Ruiz-Martinez, J.; Moreno, F.; et al. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front. Cell Dev. Biol. 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Shi, J.; Du, K.; Wang, N.; Cai, W.; Liu, S.; Ding, Z.; Wang, Y.; Li, D. Resveratrol Promotes Lysosomal Function via ER Calcium-Dependent TFEB Activation to Ameliorate Lipid Accumulation. Biochem J 2021, 478, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Leonard, S.S.; Xia, C.; Jiang, B.-H.; Stinefelt, B.; Klandorf, H.; Harris, G.K.; Shi, X. Resveratrol Scavenges Reactive Oxygen Species and Effects Radical-Induced Cellular Responses. Biochem Biophys Res Commun 2003, 309, 1017–1026. [Google Scholar] [CrossRef]
- What Is Resveratrol? What Are the Benefits of Resveratrol? Available online: https://www.batigoz.com/en/health-guide/what-is-resveratrol (accessed on 7 January 2026).
- Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of Human SIRT1 Activation by Resveratrol. J Biol Chem 2005, 280, 17187–17195. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-M.; Chien, A.; Jialal, I.; Devaraj, S. Resveratrol Upregulates SIRT1 and Inhibits Cellular Oxidative Stress in the Diabetic Milieu: Mechanistic Insights. J Nutr Biochem 2012, 23, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zheng, L.; Zhang, Q.; Li, X.; Zhang, X.; Li, Z.; Bai, X.; Zhang, Z.; Huo, W.; Zhao, X.; et al. Deacetylation of TFEB Promotes Fibrillar Aβ Degradation by Upregulating Lysosomal Biogenesis in Microglia. Protein Cell 2016, 7, 417–433. [Google Scholar] [CrossRef]
- Liu, R.; Yang, G.; Nonaka, T.; Arai, T.; Jia, W.; Cynader, M.S. Reducing TDP-43 Aggregation Does Not Prevent Its Cytotoxicity. Acta Neuropathologica Communications 2013, 1. [Google Scholar] [CrossRef]
- Tomoshige, S.; Nomura, S.; Ohgane, K.; Hashimoto, Y.; Ishikawa, M. Discovery of Small Molecules That Induce the Degradation of Huntingtin. Angewandte Chemie International Edition 2017, 56, 11530–11533. [Google Scholar] [CrossRef] [PubMed]
- Churcher, I. Protac-Induced Protein Degradation in Drug Discovery: Breaking the Rules or Just Making New Ones? J Med Chem 2018, 61, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Kuemper, S.; Cairns, A.G.; Birchall, K.; Yao, Z.; Large, J.M. Targeted Protein Degradation in CNS Disorders: A Promising Route to Novel Therapeutics? Front. Mol. Neurosci. 2024, 17. [Google Scholar] [CrossRef] [PubMed]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat Rev Drug Discov 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Z.; Hou, H.; Yang, C.; Li, J. Proteolysis-Targeting Chimera (PROTAC): A Revolutionary Tool for Chemical Biology Research. Small Methods 2025, 9, 2500402. [Google Scholar] [CrossRef]
- Buckley, D.L.; Raina, K.; Darricarrere, N.; Hines, J.; Gustafson, J.L.; Smith, I.E.; Miah, A.H.; Harling, J.D.; Crews, C.M. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 2015, 10, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-L.; Lu, P.-C.; Lee, C.-C.; He, R.-Y.; Huang, Y.-A.; Tseng, Y.-C.; Cheng, T.-J.R.; Huang, J.J.-T.; Fang, J.-M. Degradation of Neurodegenerative Disease-Associated TDP-43 Aggregates and Oligomers via a Proteolysis-Targeting Chimera. J Biomed Sci 2023, 30, 27. [Google Scholar] [CrossRef]
- He, S.; Dong, G.; Sheng, C. Strategies for Precise Modulation of Protein Degradation. Acc. Chem. Res. 2025, 58, 1236–1248. [Google Scholar] [CrossRef]
- Ibrahim, S.; Umer Khan, M.; Khurram, I.; Rehman, R.; Rauf, A.; Ahmad, Z.; Aljohani, A.S.M.; Al Abdulmonem, W.; Quradha, M.M. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons. Food Sci Nutr 2025, 13, e70011. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, M.; Yang, Y.; Du, C.; Zhou, H.; Liu, C.; Chen, Y.; Fan, L.; Ma, H.; Gong, Y.; et al. An Overview of PROTACs: A Promising Drug Discovery Paradigm. Mol Biomed 2022, 3, 46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Thakur, V.; Sardana, S.; Tiwari, V.; Sharma, D.; Kumar, A. Contemporary Trends in Targeted Protein Degradation for Neurodegenerative Diseases. European Journal of Medicinal Chemistry 2025, 300, 118110. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.R.; Gleixner, A.M.; Mauna, J.C.; Gomes, E.; DeChellis-Marks, M.R.; Needham, P.G.; Copley, K.E.; Hurtle, B.; Portz, B.; Pyles, N.J.; et al. RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. Neuron 2019, 102, 321–338.e8. [Google Scholar] [CrossRef] [PubMed]
- Codron, P.; Cassereau, J.; Vourc’h, P. InFUSing Antisense Oligonucleotides for Treating ALS. Trends in Molecular Medicine 2022, 28, 253–254. [Google Scholar] [CrossRef]
- Korobeynikov, V.A.; Lyashchenko, A.K.; Blanco-Redondo, B.; Jafar-Nejad, P.; Shneider, N.A. Antisense Oligonucleotide Silencing of FUS Expression as a Therapeutic Approach in Amyotrophic Lateral Sclerosis. Nat Med 2022, 28, 104–116. [Google Scholar] [CrossRef]
- Takeuchi, T.; Maeta, K.; Ding, X.; Oe, Y.; Takeda, A.; Inoue, M.; Nagano, S.; Fujihara, T.; Matsuda, S.; Ishigaki, S.; et al. Sustained Therapeutic Benefits by Transient Reduction of TDP-43 Using ENA-Modified Antisense Oligonucleotides in ALS/FTD Mice. Mol Ther Nucleic Acids 2023, 31, 353–366. [Google Scholar] [CrossRef]
- Moorthy, G. Target ALS Grants and Core Resources Dedicated to TDP-43-Targeted Therapeutics. Target ALS 2025. [Google Scholar]
- Menge, S.; Decker, L.; Freischmidt, A. Restoring Expression of Stathmin-2: A Novel Strategy to Treat TDP-43 Proteinopathies. Sig Transduct Target Ther 2023, 8, 266. [Google Scholar] [CrossRef] [PubMed]
- Krus, K.L.; Strickland, A.; Yamada, Y.; Devault, L.; Schmidt, R.E.; Bloom, A.J.; Milbrandt, J.; DiAntonio, A. Loss of Stathmin-2, a Hallmark of TDP-43-Associated ALS, Causes Motor Neuropathy. Cell Reports 2022, 39, 111001. [Google Scholar] [CrossRef] [PubMed]
- Baughn, M.W.; Melamed, Z.; López-Erauskin, J.; Beccari, M.S.; Ling, K.; Zuberi, A.; Presa, M.; Gonzalo-Gil, E.; Maimon, R.; Vazquez-Sanchez, S.; et al. Mechanism of STMN2 Cryptic Splice-Polyadenylation and Its Correction for TDP-43 Proteinopathies. Science 2023, 379, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, J.D.; Baskerville, V.; Rapuri, S.; Mehlhop, E.; Jafar-Nejad, P.; Rigo, F.; Bennett, F.; Mizielinska, S.; Isaacs, A.; Coyne, A.N. G2C4 Targeting Antisense Oligonucleotides Potently Mitigate TDP-43 Dysfunction in Human C9orf72 ALS/FTD Induced Pluripotent Stem Cell Derived Neurons. Acta Neuropathol 2023, 147, 1. [Google Scholar] [CrossRef] [PubMed]
- Biogen and Ionis Announce Topline Phase 1 Study Results of Investigational Drug in C9orf72 Amyotrophic Lateral Sclerosis | Biogen. Available online: https://investors.biogen.com/news-releases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results (accessed on 9 January 2026).
- Wave Life Sciences Terminates WVE-004 Program. Available online: https://www.thepharmaletter.com/biotech-news/wave-life-sciences-ends-wve-004-program (accessed on 9 January 2026).
- Russo, A.; Maiorano, G.; Cortese, B.; D’Amone, S.; Invidia, A.; Quattrini, A.; Romano, A.; Gigli, G.; Palamà, I.E. Optimizing TDP-43 Silencing with siRNA-Loaded Polymeric Nanovectors in Neuronal Cells for Therapeutic Applications: Balancing Knockdown and Function. Nanoscale 2024, 16, 22337–22349. [Google Scholar] [CrossRef]
- Cheung, K.; Droppelmann, C.A.; MacLellan, A.; Cameron, I.; Withers, B.; Campos-Melo, D.; Volkening, K.; Strong, M.J. Rho Guanine Nucleotide Exchange Factor (RGNEF) Is a Prosurvival Factor under Stress Conditions. Molecular and Cellular Neuroscience 2017, 82, 88–95. [Google Scholar] [CrossRef]
- Droppelmann, C.A.; Campos-Melo, D.; Noches, V.; McLellan, C.; Szabla, R.; Lyons, T.A.; Amzil, H.; Withers, B.; Kaplanis, B.; Sonkar, K.S.; et al. Mitigation of TDP-43 Toxic Phenotype by an RGNEF Fragment in Amyotrophic Lateral Sclerosis Models. Brain 2024, 147, 2053–2068. [Google Scholar] [CrossRef]
- Nader, W.O.; Brown, K.S.; Boyle, N.R.; Kaplelach, A.K.; Abdelaziz, S.M.; Davis, S.E.; Aljabi, Q.; Hakim, A.R.; Davidson, A.G.; Vollmer, G.A.; et al. TFEB Overexpression Alleviates Autophagy-Lysosomal Deficits Caused by Progranulin Insufficiency. Sci Rep 2025, 15, 26217. [Google Scholar] [CrossRef]
- Wu, J.; Guo, J.; Wu, J.; Song, J.; Xu, J.; Lin, Y.; Huang, C.; Shi, C.; Li, J.; Li, C.; et al. In Vivo Self-Assembled siRNAs Ameliorate Neurological Pathology in TDP-43-Associated Neurodegenerative Disease. Brain 2025, awaf330. [Google Scholar] [CrossRef]
- Kellett, E.A.; Bademosi, A.T.; Walker, A.K. Molecular Mechanisms and Consequences of TDP-43 Phosphorylation in Neurodegeneration. Mol Neurodegener 2025, 20, 53. [Google Scholar] [CrossRef]
- Alhassan, H.H.; Janiyani, K.; Surti, M.; Adnan, M.; Patel, M. The Dual Role of Glycogen Synthase Kinase-3 Beta (GSK3β) in Neurodegenerative Pathologies: Interplay between Autophagy and Disease Progression. Front. Pharmacol. 2025, 16, 1693805. [Google Scholar] [CrossRef]
- Tejwani, L.; Jung, Y.; Kokubu, H.; Sowmithra, S.; Ni, L.; Lee, C.; Sanders, B.; Lee, P.J.; Xiang, Y.; Luttik, K.; et al. Reduction of Nemo-like Kinase Increases Lysosome Biogenesis and Ameliorates TDP-43–Related Neurodegeneration. J Clin Invest 2023, 133. [Google Scholar] [CrossRef]
- Gao, J.; Long, L.; Xu, F.; Feng, L.; Liu, Y.; Shi, J.; Gong, Q. Icariside II, a Phosphodiesterase 5 Inhibitor, Attenuates Cerebral Ischaemia/Reperfusion Injury by Inhibiting Glycogen Synthase Kinase-3β-mediated Activation of Autophagy. British J Pharmacology 2020, 177, 1434–1452. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Hua, X.; Qin, T.; Zhang, J.; He, K.; Xia, Q. Inhibition of Glycogen Synthase Kinase 3β Protects Liver against Ischemia/Reperfusion Injury by Activating 5′ Adenosine Monophosphate-activated Protein Kinase-mediated Autophagy. Hepatology Research 2019, 49, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gong, S.; Zhang, H.; Chen, Y.; Liu, Y.; Hao, J.; Liu, H.; Li, X. From the Regulatory Mechanism of TFEB to Its Therapeutic Implications. Cell Death Discov. 2024, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Yuan, M.; Fan, H.; Cai, Z. Role of AMPK in Autophagy. Front. Physiol. 2022, 13, 1015500. [Google Scholar] [CrossRef]
- Palmieri, M.; Pal, R.; Sardiello, M. AKT Modulates the Autophagy-Lysosome Pathway via TFEB. Cell Cycle 2017, 16, 1237–1238. [Google Scholar] [CrossRef] [PubMed]
- Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis. Sci. Signal. 2012, 5. [Google Scholar] [CrossRef]
- Park, K.; Lee, M.-S. Current Status of Autophagy Enhancers in Metabolic Disorders and Other Diseases. Front Cell Dev Biol 2022, 10, 811701. [Google Scholar] [CrossRef]
- Kril, J. Neuropathology of Neurodegenerative Disorders. TBLSC 2021, 2021, e1005587. [Google Scholar] [CrossRef]
- Nasir, A.R.; Delpirou Nouh, C. TDP-43-Proteinopathy at the Crossroads of Tauopathy: On Copathology and Current and Prospective Biomarkers. Front. Cell. Neurosci. 2025, 19, 1671419. [Google Scholar] [CrossRef]
- Asakawa, K.; Tomita, T.; Shioya, S.; Handa, H.; Saeki, Y.; Kawakami, K. Intrinsically Accelerated Cellular Degradation Is Amplified by TDP-43 Loss in ALS-Vulnerable Motor Neurons in a Zebrafish Model. Nat Commun 2025, 16, 9213. [Google Scholar] [CrossRef]
- Chennampally, P.; Sayed-Zahid, A.; Soundararajan, P.; Sharp, J.; Cox, G.A.; Collins, S.D.; Smith, R.L. A Microfluidic Approach to Rescue ALS Motor Neuron Degeneration Using Rapamycin. Sci Rep 2021, 11, 18168. [Google Scholar] [CrossRef] [PubMed]
- San Gil, R.; Walker, A.K. Unlocking Disease-Modifying Treatments for TDP-43-Mediated Neurodegeneration. BioEssays 2025, 47, e202400257. [Google Scholar] [CrossRef] [PubMed]
- Hayes, L.R.; Kalab, P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022, 19, 1061–1084. [Google Scholar] [CrossRef]
- Moorthy, G. Biomarkers: Pioneering Non-Invasive Tools for TDP-43 Detection. Target ALS; 2025. [Google Scholar]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).