Submitted:
19 January 2026
Posted:
20 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Site and Design
3.2. Sampling and Data Collection
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CT | Conventional tillage |
| MT | Minimum tillage |
| NT | No-tillage |
| CA | Conservation agriculture |
| BIC | Bayesian Information Criterion |
References
- Zimdahl, R.L. Weed–Crop Competition: A Review, 2nd ed.; Blackwell Publishing: Ames, Iowa, 2004; p. 220. [Google Scholar]
- Fernandez-Quintanilla, C.; Navarrete, L.; Gonzalez-Andujar, J.L.; Fernandez, A.; Sanchez, M.J. Seedling recruitment and age specific survivorship and reproduction in populations of Avena sterilis ssp. ludoviciana. J. Appl. Ecol. 1986, 23, 945–955. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L. A matrix model for the dynamic population and vertical distribution of weed seedbanks. Ecol. Model. 1997, 97, 117–120. [Google Scholar] [CrossRef]
- Colbach, N.; Roger-Estrade, J.; Chauvel, B.; Caneill, J. Modelling vertical and lateral seed bank movements during mouldboard ploughing. Eur. J. Agron. 2000, 13, 111–124. [Google Scholar] [CrossRef]
- Hernandez Plaza, E.; Kozak, M.; Navarrete, L.; Gonzalez-Andujar, J.L. Tillage system did not affect weed diversity in a 23-year experiment in Mediterranean dryland. Agric. Ecosyst. Environ. 2011, 140, 102–105. [Google Scholar] [CrossRef]
- Eager, E.; Haridas, C.; Pilson, D.; Rebarber, R.; Tenhumberg, B. Disturbance Frequency and Vertical Distribution of Seeds Affect Long-Term Population Dynamics: A Mechanistic Seed Bank Model. Am. Nat. 2013, 182, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Pardo, G.; Cirujeda, A.; Perea, F.; Verdú, A.M.C.; Mas, M.; Urbano, J.M. Effects of Reduced and Conventional Tillage on Weed Communities: Results of a Long-Term Experiment in Southwestern Spain. Adv. Weed Sci. 2019, 37. [Google Scholar] [CrossRef]
- Légère, A.; Stevenson, F.C.; Benoit, D.L. The Selective Memory of Weed Seedbanks after 18 Years of Conservation Tillage. Weed Sci. 2011, 59, 98–106. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Hernandez Plaza, E.; Navarrete, L.; Gonzalez-Andujar, J.L. Intensity of soil disturbance shapes response trait diversity of weed communities: the long-term effects of different tillage systems. Agric. Ecosyst. Environ. 2015, 207, 101–108. [Google Scholar] [CrossRef]
- Jurado-Exposito, M.; Lopez-Granados, F.; Gonzalez-Andujar, J.L.; Garcia-Torres, L. Characterizing population growth rate of Convolvulus arvensis in wheat-sunflower no-tillage systems. Crop Sci. 2005, 45, 2106–2112. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.; Veroz-Gonzalez, O.; Blanco-Roldan, G.; Marquez-Garcia, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2014, 146, 204–212. [Google Scholar] [CrossRef]
- Cordeau, S. Conservation agriculture and agroecological weed management. Agronomy 2022, 12, 867. [Google Scholar] [CrossRef]
- Tuesca, D.; Nisensohn, L.; Bocanelli, S.; Torres, P.; Lewis, P. Weed seedbank and vegetation dynamics in summer crops under two contrasting tillage regimes. Community Ecol. 2004, 5, 247–255. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Encuesta sobre Superficies y Rendimientos de Cultivos (ESYRCE): resultados 2015. Madrid, Spain, 2016.
- Alarcon, R.; Hernández Plaza, E.; Navarrete, L.; Sánchez, M.J.; Escudero, A.; Hernanz, J.L.; Sánchez-Giron, V.; Sánchez, A.M. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res 2018, 179, 54–62. [Google Scholar] [CrossRef]
- Streit, B.; Rieger, S.B.; Stamp, P.; Richner, W. Weed populations in winter wheat as affected by crop sequence, intensity of tillage and time of herbicide application in a cool and humid climate. Weed Res. 2003, 43, 20–32. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur J Agron 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Demjanová, E.; Macák, M.; Ðalović, I.; Majerník, F.; Týr, Š.; Smatana, J. Effects of tillage systems and crop rotation on weed density, weed species composition and weed biomass in maize. Agron. Res. 2009, 7, 785–792. [Google Scholar]
- Dorado, J.; Barroso, J.; Peña, J.M.; Luna, I.M.; Fernández-Quintanilla, C. Weed control efficacy and economic profitability of three contrasting cropping systems in semi-arid rainfed zones. Weed Sci. 2025, 73, 1–13. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L.; Saavedra, M. Spatial distribution of annual grass weed populations in winter cereals. Crop Prot. 2003, 22, 629–633. [Google Scholar] [CrossRef]
- Izquierdo, J.; Blanco-Moreno, J.M.; Chamorro, L.; Gonzalez-Andujar, J.L.; Sans, F.X. Spatial distribution of weed diversity within a cereal field. Agron. Sustain. Dev. 2009, 29, 491–496. [Google Scholar] [CrossRef]
- Scordia, D.; Guarnaccia, P.; Calderone, F.; Maio, A.; La Malfa, T.; Scavo, A.; Gresta, F. Adoption of cereal–legume double cropping toward more sustainable organic systems in the Mediterranean area. Agronomy 2024, 14, 772. [Google Scholar] [CrossRef]
- Dorado, J.; López-Fando, C. The effect of tillage system and use of a paraplow on weed flora in a semiarid soil from central Spain. Weed Res. 2006, 46, 424–431. [Google Scholar] [CrossRef]
- Bybee-Finley, K.A.; Mirsky, S.B.; Ryan, M.R. Crop biomass not species richness drives weed suppression in warm-season annual grass–legume intercrops in the northeast. Weed Sci. 2017, 65, 669–680. [Google Scholar] [CrossRef]
- Barroso, J.; Reardon, C.L.; Singh, S.; Machado, S.; Gourlie, J.A.; Namdar, G.F.; Oreja, F.H.; Pritchett, L.C.; Kriete, L.; Calderon, F.J.; Berry, P.A.; McGee, R.J.; Durfee, N.; Adams, C.B.; Hagerty, C.H. Biomass production, weed suppression, and soil water use of cover crops in dryland wheat production systems. Agron. J. 2025, 117, e70053. [Google Scholar] [CrossRef]
- Baraibar, B.; Mortensen, D.A.; Hunter, M.C.; Barbercheck, M.E.; Kaye, J.P.; Finney, D.M.; Curran, W.S.; Bunchek, J.; White, C.M. Growing degree days and cover crop type explain weed biomass in winter cover crops. Agron. Sustain. Dev. 2018, 38. [Google Scholar] [CrossRef]
- Rougé, A.; Adeux, G.; Busset, H.; Hugard, R.; Martin, J.; Matejicek, A.; Moreau, D.; Guillemin, J.P.; Cordeau, S. Carry-over effects of cover crops on weeds and crop productivity in no-till systems. Field Crops Res. 2023, 295, 108899. [Google Scholar] [CrossRef]
- Torra, J.; Gonzalez-Andujar, J.L; Recasens, J. Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate. Weed Res. 2008, 48, 136–146. [Google Scholar] [CrossRef]
- Sjursen, H.; Brandsæter, L.O.; Netland, J. Effects of repeated clover undersowing, green manure ley and weed harrowing on weeds and yields in organic cereals. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 138–150. [Google Scholar] [CrossRef]
- Oreja, F.H.; Torcat-Fuentes, M.; Barrio, A.; Schiavinato, D.J.; Rosso, V.; de la Fuente, E. Weed Seedbank Changes Associated with Temporary Tillage After Long Periods of No-Till. Agronomy 2025, 15, 1410. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Casanova Pena, C.; Zambrana Quesada, E.; Sánchez Jiménez, F.J.; Tenorio Pasamón, J.L. Arable weed species associated with soil tillage systems under Mediterranean conditions. Land Degrad. Dev. 2018, 29, 865–874. [Google Scholar] [CrossRef]
- Knežević, M.; Đurkić, M.; Knežević, I.; Antonić, O.; Jelaska, S. Effects of tillage and reduced herbicide doses on weed biomass production in winter and spring cereals. Plant Soil Environ. 2003, 49, 414–421. [Google Scholar] [CrossRef]
- Mas, M.T.; Verdú, A.M. Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions. Soil Tillage Res. 2003, 74, 15–24. [Google Scholar] [CrossRef]
- Kurstjens, D.A. Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res. 2007, 97, 293–305. [Google Scholar] [CrossRef]
- Clements, D.R.; Weise, S.F.; Swanton, C.J. Integrated weed management and weed species diversity. Phytoprotection 1994, 75, 1–18. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L. Integrated Weed Management: a shift towards more sustainable and holistic practices. Agronomy 2023, 13, 2646. [Google Scholar] [CrossRef]
- Sanchez-Giron, V.; Serrano, A.; Hernanz, J.L.; Navarrete, L. Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. Soil Tillage Res. 2004, 78, 35–44. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd ed; U.S. Department of Agriculture Natural Resources Conservation Service: Washington, USA, 1999.
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2025. [Google Scholar]
| Weed species | group |
|---|---|
| Amaranthus blitoides S. Watson | D |
| Anacyclus clavatus (Desf.) Pers. | D |
| Asperugo procumbens L. | D |
| Atriplex patula L. | D |
| Bassia scoparia (L.) Voss. | D |
| Bombycilaena erecta (L.) Smolj. | D |
| Capsella bursa-pastoris (L.) Medik. | D |
| Cardaria draba (L.) Desv. | D |
| Cnicus benedictus L. | D |
| Chenopodium album L. | D |
| Convolvulus arvensis L. | D |
| Conyza canadensis (L.) Cronq. | D |
| Descurainia sophia (L.) Webb. Ex Prantl. | D |
| Epilobium brachycarpum C. Presl | D |
| Fumaria officinalis L. | D |
| Fumaria parviflora Lam. | D |
| Galium tricornutum Dandy | D |
| Heliotropium europaeum L. | D |
| Hordeum murinum L. | G |
| Hypecoum imberbe Sm. | D |
| Lactuca serriola L. | D |
| Lamium amplexicaule L. | D |
| Lolium rigidum Gaudin | G |
| Malva sylvestris L. | D |
| Papaver rhoeas L. | D |
| Papaver hybridum L. | D |
| Polygonum aviculare L. | D |
| Portulaca oleracea L. | D |
| Roemeria hybrida (L.) DC. | D |
| Salsola kali L. | D |
| Sisymbrium irio L. | D |
| Sonchus asper (L.) Hill | D |
| Sonchus oleraceus L. | D |
| Trigonella polyceratia L. | D |
| Urtica urens L. | D |
| Veronica hederifolia L. | D |
| Source | df | F | p-value |
| Crop type (C) | 1 | 33.18 | >0.0001 |
| Year (Crop type) | 5 | 2.88 | 0.0197 |
| Tillage (T) | 2 | 14.93 | >0.0001 |
| C x T | 2 | 3.87 | 0.0253 |
| Residual | 73 |
| Tillage system | Legume | Wheat |
| Minimum tillage | 40.77±50.47 | 18.55±61.21 |
| Conventional tillage | 26.23±36.72 | 14.03±61.21 |
| No-tillage | 24.34±50.47 | 13.62±36.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
