Submitted:
17 January 2026
Posted:
21 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction and Motivation
2. Algorithmic Spacetime and Energetic States
3. Movement–Amplified Algorithmic Energy
4. Desmos Energetic Interaction and Emergent Gravity
5. Energetic Dominance and the Moon Paradox
6. Energetic Threshold and Spacetime Precision
6.1. Energetic Control of Precision
6.2. Energetic Gradient as the Causal Quantity
6.3. Energetic Threshold
7. Mercury and Energetic Precession
8. Unified Movement–Energy–Gravity Law
9. Analytic Proof of Mercury’s Perihelion Precession from Desmos
0.1. Local Desmos Precision Law
9.2. Lemma: Power–Law Deviation Implies Orbital Non–Closure
9.3. Proposition: Perihelion Advance per Orbit
9.4. Theorem: Mercury’s 43″ per Century from Desmos
10. Comparison Across the Inner Solar System


11. Conclusion
References
- Abdul, M. Quō Vādis theoretical physics and cosmology? from Newton’s Metaphysics to Einstein’s Theology. Ann. Math. Phys. 2023. [Google Scholar] [CrossRef]
- Aguilera, M.; Moosavi, S.; Shimazaki, H. A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nat. Commun. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Alazard, D.; Sanfedino, F.; Kassarian, E. Non-linear dynamics of multibody systems: a system-based approach. ArXiv abs/2505.0; 2025. [CrossRef]
- Ashman, L. Physics in Minerva’s Academy: early to mid-eighteenth-century appropriations of Isaac Newton’s natural philosophy at the University of Leiden and in the Dutch Republic at large, 1687–c.1750. Intellect. Hist. Rev. 2025, 35, 853–856. [Google Scholar] [CrossRef]
- Aurrekoetxea, J.; Clough, K.; Lim, E. Cosmology using numerical relativity. Living Rev. Relativ. 2024, 28. [Google Scholar] [CrossRef]
- Babichev, E.; Izumi, K.; Noui, K.; Tanahashi, N.; Yamaguchi, M. Generalization of conformal-disformal transformations of the metric in scalar-tensor theories. Phys. Rev. D. 2024. [Google Scholar] [CrossRef]
- Barrow, J. Non-Euclidean Newtonian cosmology; Class. Quantum Gravity, 2020; p. 37. [Google Scholar] [CrossRef]
- Bartlett, R. Quantum Consciousness, Anesthesia, and Cosmological Entanglement. IPI Lett 2025. [Google Scholar] [CrossRef]
- Bini, D.; Damour, T.; Geralico, A. Sixth post-Newtonian local-in-time dynamics of binary systems. Phys. Rev. D 2020, 102, 24061. [Google Scholar] [CrossRef]
- Bini, D.; Damour, T.; Geralico, A. Novel Approach to Binary Dynamics: Application to the Fifth Post-Newtonian Level. Phys. Rev. Lett. 123 2019, 23, 231104. [Google Scholar] [CrossRef]
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G. The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach: Potential contributions. Nucl. Phys. B 2020a, 965, 115352. [Google Scholar] [CrossRef]
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G. Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach. Nucl. Phys. B 2020b. [Google Scholar] [CrossRef]
- Bose, A.; Walters, P. A multisite decomposition of the tensor network path integrals. J. Chem. Phys. 2021, 156 2, 24101. [Google Scholar] [CrossRef]
- Brasch, F. THE ISAAC NEWTON COLLECTION. Publ. Astron. Soc. Pacific 1962, 74, 366. [Google Scholar] [CrossRef]
- Cai, Z.-T.; Li, H.-D.; Chen, W. Quantum-Classical Correspondence of Non-Hermitian Symmetry Breaking. Phys. Rev. Lett. 2024, 134 24, 240201. [Google Scholar] [CrossRef]
- Cerveny, L.; Einstein, A. BUILDING TRUST; Tao te Ching, 2020. [Google Scholar] [CrossRef]
- Challoumis, C. Algorithmic Energy: An Algorithmic Space–Time Interpretation of Interaction and Gravitation Based on Desmos. Preprints 2026. [Google Scholar] [CrossRef]
- Challoumis, C. Algorithmic spacetime: result of multiple big bangs points (multi- excitation Cosmos) [WWW Document]; Res. Acad., 2025a; Available online: https://www.researchgate.net/publication/398117419_Algorithmic_spacetime_result_of_multiple_big_bangs_points_multi-_excitation_Cosmos?_sg%5B0%5D=pEXs_2TViBNDCdlq6Nts0uXCg7Y8qKt_wAlsShSglOucbQx3dnVtd-qIFZH7jut1aXA21pYP668d31hcm0jANG-U-C06NUe2ymA6Ma34.Matvg.
- Challoumis, C. Moon’s Paradox: Why the Moon Is Not a Planet based on Desmos. Preprints 2025b. [Google Scholar] [CrossRef]
- Challoumis, C. Elastic–Algorithmic Spacetime (EAS): Algorithmic Scale Generation, Elastic Expansion, and Toroidal Closure [WWW Document]; Acad. Res., 2025c; Available online: https://www.academia.edu/145472695/Elastic_Algorithmic_Spacetime_EAS_Algorithmic_Scale_Generation_Elastic_Expansion_and_Toroidal_Closure.
- Challoumis, C. Panphysics Enopiisis. Edelweiss Appl. Sci. Technol. 2024, 8, 9356–9375. [Google Scholar] [CrossRef]
- Chen, B.; Sun, H.; Zheng, Y. Quantization of Carrollian conformal scalar theories. Phys. Rev. D. 2024. [Google Scholar] [CrossRef]
- Chen, E.K. Does quantum theory imply the entire Universe is preordained? Nature 2023, 624, 513–515. [Google Scholar] [CrossRef]
- Chen, Z.-Q.; Ni, R.-H.; Song, Y.; Huang, L.; Wang, J.; Casati, G. Correspondence Principle, Ergodicity, and Finite-Time Dynamics. Phys. Rev. Lett. 2025, 134 13, 130402. [Google Scholar] [CrossRef]
- Chruściel, P. Elements of General Relativity; Compact Textb. Math., 2020. [Google Scholar] [CrossRef]
- Close, F. A walk on the wild side. Nature 2004, 432, 277. [Google Scholar] [CrossRef]
- Cohen, H. Stock and bulk in the latest Newton scholarship. Br. J. Hist. Sci. 2018, 51, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Cun, Y. A Theoretical Framework for Back-Propagation, 1988.
- D’Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting cosmologies in teleparallelism. Class. Quantum Gravity 2021, 39. [Google Scholar] [CrossRef]
- Das, S.; Fridman, M.; Lambiase, G. Testing the quantum equivalence principle with gravitational waves. J. High Energy Astrophys. 2025. [Google Scholar] [CrossRef]
- De Angelis, A. Galileo Galilei’s Two New Sciences; Hist. Phys., 2021. [Google Scholar] [CrossRef]
- De Haro, J. Relations between Newtonian and Relativistic Cosmology; Universe, 2024. [Google Scholar] [CrossRef]
- Einstein, A. Relativity: The Special and the General Theory, 100th Anniversary Edition; 2015a. [Google Scholar]
- Einstein, A. Relativity: The Special and the General Theory. 2015b. [Google Scholar] [CrossRef]
- Einstein, A. On the Relativity Problem. Bost. Stud. Philos. Sci. 2007, 250, 1528–1536. [Google Scholar] [CrossRef]
- Einstein, A. Albert Einstein to Michele Besso. Phys. Today 2005, 58, 14. [Google Scholar] [CrossRef]
- Einstein, A. Einstein’s 1912 manuscript on the special theory of relativity : a facsimile, 2004.
- Einstein, A. The Bianchi Identities in the Generalized Theory of Gravitation. Can. J. Math. 1950, 2, 120–128. [Google Scholar] [CrossRef]
- Einstein, A. The Meaning of Relativity; 1946. [Google Scholar] [CrossRef]
- Einstein, A.; Hawking, S. The Essential Einstein: His Greatest Works, 1995.
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Fields, C.; Friston, K.; Glazebrook, J.; Levin, M. A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol. 2021. [Google Scholar] [CrossRef]
- Gielen, S. Frozen formalism and canonical quantization in group field theory. Phys. Rev. D. 2021. [Google Scholar] [CrossRef]
- Guicciardini, N. Isaac Newton and Natural Philosophy. 2018. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sugishita, S.; Tanaka, A.; Tomiya, A. Deep learning and the AdS/CFT correspondence. Phys. Rev. D. 2018. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rep. 2018. [Google Scholar] [CrossRef]
- Hess, P. Alternatives to Einstein’s General Relativity Theory. Prog. Part. Nucl. Phys. 2020, 114, 103809. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M.; Vilson, O. Transformation properties and general relativity regime in scalar–tensor theories. Class. Quantum Gravity 2015, 32. [Google Scholar] [CrossRef]
- Jarv, L.; Runkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D. 2018. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. The Geometrical Trinity of Gravity; Universe, 2019. [Google Scholar] [CrossRef]
- Koyré, A. Book Reviews: From the Closed World to the Infinite Universe; Science, 1958; pp. 80–. [Google Scholar] [CrossRef]
- Leigh, N.; Wegsman, S. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity. Mon. Not. R. Astron. Soc. 2018, 476, 336–343. [Google Scholar] [CrossRef]
- Levi, M. Effective field theories of post-Newtonian gravity: a comprehensive review. Reports Prog. Phys. 2018, 83. [Google Scholar] [CrossRef]
- Li, X.; Lyu, S.-X.; Wang, Y.; Xu, R.; Zheng, X.; Yan, Y. Toward quantum simulation of non-Markovian open quantum dynamics: A universal and compact theory. Phys. Rev. A 2024. [Google Scholar] [CrossRef]
- Lin, S.; Liu, H.-Y.; Nguyen, D.; Tran, N.T.T.; Pham, H.; Chang, S.-L.; Lin, C.-Y.; Lin, M.-F. The theoretical frameworks; 2020. [Google Scholar] [CrossRef]
- McTague, J.; Foley, J. Non-Hermitian cavity quantum electrodynamics-configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 156 2021, 15, 154103. [Google Scholar] [CrossRef]
- Mocz, P.; Lancaster, L.; Fialkov, A.; Becerra, F.; Princeton, P.-H.C.; Harvard; Sabatier, U.; Toulouse. Schrödinger-Poisson–Vlasov-Poisson correspondence. Phys. Rev. D 2018, 97, 83519. [Google Scholar] [CrossRef]
- Murray, R.; Orr, B.; Al-Khateeb, S.; Agarwal, N. Constructing a multi-theoretical framework for mob modeling. Soc. Netw. Anal. Min. 2025, 15, 33. [Google Scholar] [CrossRef]
- Naruko, A.; Saito, R.; Tanahashi, N.; Yamauchi, D. Ostrogradsky mode in scalar-tensor theories with higher-order derivative couplings to matter. Prog. Theor. Exp. Phys. 2022. [Google Scholar] [CrossRef]
- Nashed, G.; Bamba, K. Properties of compact objects in quadratic non-metricity gravity. Ann. Phys. (N. Y) 2025. [Google Scholar] [CrossRef]
- Nastase, H. Cosmology and String Theory; Fundam. Theor. Phys., 2020. [Google Scholar] [CrossRef]
- Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2018. [Google Scholar] [CrossRef]
- Palariev, V.; Shtirbu, A. Theoretical framework of grape irrigation: a review; Collect. Work. Um. Natl. Univ. Hortic., 2025. [Google Scholar] [CrossRef]
- Rehman, A.; Naseer, T.; Dayanandan, B. Interpretation of complexity for spherically symmetric fluid composition within the context of modified gravity theory. Nucl. Phys. B 2025. [Google Scholar] [CrossRef]
- Rutkin, H. Sapientia Astrologica: Astrology, Magic and Natural Knowledge; Archimedes, 2019; pp. ca. 1250–1800. [Google Scholar] [CrossRef]
- Sasmal, S.; Vendrell, O. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method. J. Chem. Phys. 2020, 153 15, 154110. [Google Scholar] [CrossRef]
- Scali, F. The cosmological constant problem: from Newtonian cosmology to the greatest puzzle of modern theoretical cosmology. Philos. Trans. A. Math. Phys. Eng. Sci. 2025, 383 2301, 20230292. [Google Scholar] [CrossRef]
- Shank, J. Between Isaac Newton and Enlightenment Newtonianism. Sci. Without God? 2019. [Google Scholar] [CrossRef]
- Snobelen, S. Apocalyptic themes in Isaac Newton’s astronomical physics; 2020; pp. 1 95–104. [Google Scholar] [CrossRef]
- Snobelen, S. The Cambridge Companion to Newton; Isis, 2003. [Google Scholar] [CrossRef]
- Vacaru, S. Inconsistencies of Nonmetric Einstein–Dirac–Maxwell Theories and a Cure for Geometric Flows of f(Q) Black Ellipsoid, Toroid, and Wormhole Solutions. Fortschritte der Phys. 2025, 73. [Google Scholar] [CrossRef]
- Wang, S.-X.; Yan, Z. General theory for infernal points in non-Hermitian systems. Phys. Rev. B 2024. [Google Scholar] [CrossRef]
- Wiese, U.-J.; Einstein, A. Statistical Mechanics; Man. Theor. Chem., 2021. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, X.; Wang, Q.; Lu, Z.; Zhang, D.; Cai, Y.-F.; Saridakis, E. Quintom cosmology and modified gravity after DESI 2024. Sci. Bull. 2024. [Google Scholar] [CrossRef]
| Planet | a (AU) | e | T (days) | δ | (/orbit) | (/century) |
| Mercury | 0.387099 | 0.205630 | 87.9691 | 0.103517 | 42.9806 | |
| Venus | 0.723332 | 0.006773 | 224.7010 | 0.053058 | 8.6246 | |
| Earth | 1.000000 | 0.016710 | 365.2560 | 0.038388 | 3.8387 | |
| Mars | 1.523662 | 0.093412 | 686.9800 | 0.025409 | 1.3509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
