Submitted:
15 January 2026
Posted:
16 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Approaches to Quantum Gravity
2.1. String Theory with AdS/CFT Correspondence
2.2. Loop Quantum Gravity
2.3. Group Field Theory
2.4. Causal Set Approach
- 1.
- Binary Axiom: we may model the classical spacetime as a set , whose elements represent spacetime events, together with a binary relation ≺ on ; The elements of represent causal relations between pairs of spacetime events;
- 2.
- Measure Axiom: the volume of a spacetime region corresponding to a subset of is equal to the cardinality of in fundamental units, up to Poisson-type fluctuations;
- 3.
- Countability: the set is countable;
- 4.
- Transitivity: when we take three elements x, y, and z in , if , then ;
- 5.
- Interval Finiteness: for every pair of elements x and z in , we have finite cardinality for the open interval ;
- 6.
- Irreflexivity: elements of are not self-related with respect to ≺; it means ;
2.5. Non-Commutative Geometry
2.6. Causal Dynamical Triangulations
2.7. Asymptotic Safety
2.8. Entropic Gravity
3. Models of the Late-Time Accelerated Expansion in Current Quantum Gravity Approaches
3.1. Origin of the Cosmological Constant in the Metastring Theory
- 1.
- the cosmological constant
- 2.
- the Planck units
- 3.
- the effective particle physics
3.2. Emergence of Cosmological Constant in Discrete Approaches to Quantum Gravity
3.3. Group Field Theory Condensate Cosmology
- 1.
- regime: Asymptotic w approaches with:
- 2.
- Late time singularities: leads to Big Rip
- 3.
- Multi-mode resolution: Two-mode systems enable phantom crossing (), while avoiding singularities through phantom de Sitter analogs
- 1.
- is determined by the parameters of a single mode despite the fact that we consider two modes.
- 2.
-
Actually, for a non-vanishing , we see that is necessary; from the theory we could in principle consider the case where vanishes for all modes j,114], which may provide us the Minkowski spacetime. But Equation (84) shows that the observation of a non-vanishing cosmological constant at late times would require that the could not be zero. This implies a quantum bounce ,[114], which resolves the Big Bang singularity. When we express it differently, the non-vanishing cosmological constant itself would be a remnant of the expansion history of our universe in the far past. This indirect connection between very early and very late universe dynamics (and thus very small and very large scales) is quite interesting, and it is only possible because we are in an emergent spacetime framework.To be more general, the value of cannot be directly related to the bouncing scale, since is determined by the parameters of a single mode, but the bounce depends on the collective contributions from all modes. The reason for this is that in the bouncing regime, the modulus of each mode remains small, and no single mode dominates the dynamics. This is actually required the sum of all must vanish. If instead a single mode were to dominate the dynamics from the beginning of the bounce, then enforcing as a good clock would necessitate . And this leads to a vanishing cosmological constant. By contrast, when multiple modes contribute to the bounce while a single mode dominates the late-time dynamics, it becomes possible to satisfy and still retain a nonzero , which allows us to obtain a nonvanishing cosmological constant in the model.However, we can extract potentially relevant observational constraints, at least qualitatively. On the one hand, could not be too large, otherwise, we will have a large cosmological constant . On the other hand, contributes to the critical energy density of the universe at the bounce, [114]. Hence, it can’t be too small, or we would lose the established physics of the hot dense state of the universe in the very early time, with spacetime dynamics still governed by the Friedmann evolution ( the universe would enter instead quickly into a QG bouncing regime). These two constraints can be principally used to narrow down the possible range of using observations.
- 3.
- does not depend on , hence the mass renormalization of the group field theory model will not change the value of the cosmological constant. We can note also that is related to the effective Newton’s constant, as emerging in the Friedmann phase of cosmic expansion. So, the two key couplings of gravitational dynamics in classical GR are thus both emergent and they are independent of each other in this QG model.
3.4. The Causal Set Theory
- 1.
- the assumption of conjugacy between and V
- 2.
- the number to volume correspondence
- 3.
- there are fluctuations in V, which are Poisson, with
3.5. A Model of Tejinder Singh Based on String Theory and Non-Commutative Geometry
- 1.
- If a length scale associated with the space-time-matter atoms is larger than Planck length, one then gets a quantum theory of gravity for the bosonic (gravity) and fermionic (matter) aspects of the space-time-matter atoms. We can see that these degrees of freedom evolve with respect to the characteristic time parameter of non-commutative geometry. QG will not be exclusively a Planck scale phenomenon, but relevant even at much lower energies if the gravity associated with an space-time-matter atom cannot be neglected, [125]. This could precisely happen, if the Compton wavelength associated with the space-time-matter atom is of the order of the size of the observed universe.
- 2.
- In the other extreme limit, the entanglement of a very large number of space-time-matter atoms results in a rapid ‘spontaneous localisation’, giving rise to a classical space-time geometry driven by point matter sources. These are then obeying the laws of classical GR. Ordinary space-time is recovered, but the non-commutative time parameter will be lost in the classical limit.
3.6. Causal Dynamical Triangulations and Baby Universe Dark Energy
3.7. Asymptotically Safe Cosmology
- Type I Cutoff: Based on cosmic time t, given by
- Type II Cutoff: This is the choice about which we wrote above proportional to the Hubble parameter H, expressed as
- Type III Cutoff: Related to spacetime curvature, using the Kretschmann scalar , given by
- Type IV Cutoff: Tied to the temperature T of the cosmic plasma, where , formulated as
3.8. Holographic Dark Energy
3.9. Emergence of Dark Energy and Dark Matter in Entropic Gravity
- 1.
- We have a microscopic bulk perspective in which the area law for the entanglement entropy is due to the short distance entanglement of neighboring degrees of freedom that build the emergent bulk spacetime.
- 2.
- The de Sitter entropy is evenly divided over the same microscopic degrees of freedom that build the emergent spacetime through their entanglement, and would be caused by the long range entanglement of part of these degrees of freedom.
4. Ring Paradigm as a New Approach to Quantum Gravity
5. Dark Energy Model Obtained by Ring Paradigm
6. Comparison of Various Late-Time Acceleration Scenarios
7. Conclusions and Future Outlook
- Our work here has examined a wide spectrum of QG paradigms, ranging from metastring theory and its non-commutative phase-space geometry to loop quantum gravity, group field theory, causal set theory, asymptotic safety, entropic gravity, and the novel ring paradigm. We have shown here that the phenomenon of the accelerating expansion of the universe can naturally emerge within several independent theoretical frameworks and each of these approaches replaces the traditional cosmological constant problem with a more fundamental quantum or geometric origin of cosmic acceleration.
- A unifying theme found across these diverse models is the concept of emergent spacetime and it is important. Whether through the condensation of quantum geometric degrees of freedom, holographic dualities, discrete causal structures, or topological excitations, all frameworks indicate that the universe’s large-scale dynamics arises from microscopic quantum structures, suggesting that DE is a manifestation of deep quantum geometry rather than a simple additional matter field as is easily assumed.
- The work also emphasizes that these approaches provide a new conceptual link between early and late time cosmology. Quantum gravitational effects that are responsible for resolving the Big Bang singularity or initiating inflation appear in several models, to emerge again at late times as drivers of acceleration. This dual appearance hints at a single underlying mechanism governing the Universe’s entire history, from its early beginnings to its late possible ends.
- Looking toward future developments, one of the most promising avenues lies in connecting these theoretical frameworks with high precision cosmological data. This is particularly interesting as observational data for cosmology would here provide a testing bed for quantum gravitational theories. Upcoming observatories such as the Vera C. Rubin Observatory [199] and LSST [200], the Nancy Grace Roman Space Telescope [201], the Euclid mission, the Square Kilometre Array [202] and the Cosmic Explorer gravitational wave observatory [203] will deliver unprecedented constraints on the Hubble parameter, structure growth, and DE equation of state. These facilities may provide the first observational handles to distinguish QG imprints in the late time universe from standard CDM predictions.
- Nevertheless, there still remain profound challenges and open questions. The mathematical formulations of several QG paradigms are still incomplete, and their semiclassical or phenomenological limits are not yet derived in sufficient detail to allow for particularly strong confrontation with data. The renormalization behavior of certain models, the exact nature of the emergent degrees of freedom and the translation between discrete and continuum formulations remain unsolved issues that must be addressed before a definitive picture can be achieved.
- The interplay between QG and cosmology also demands the development of new computational and analytical tools, and future research should hence aim to build consistent bridge theories that connect the microscopic quantum geometry with effective field-theoretic and thermodynamic descriptions of spacetime. Cross-disciplinary frameworks linking condensed matter analogies, information theory and algebraic geometry may also prove very useful in constructing a coherent narrative that unifies all these approaches.
- Finally, the ultimate goal will be to create a synergy between these results into a single, experimentally verifiable theory of QG capable of predicting both the cosmological constant and the time evolution of DE. As next-generation observations become more precise, the coming decade may well decide which of these paradigms most accurately captures the quantum fabric of our accelerating universe.
Acknowledgments
References
- Newton, I. Philosophiæ Naturalis Principia Mathematica; 1687. [Google Scholar]
- Planck, M. Über das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik. 1901, 309, 553–563. [Google Scholar] [CrossRef]
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik. 1905, 17, 891–921. [Google Scholar] [CrossRef]
- Einstein, A. On the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915, 778–786. [Google Scholar]
- Peskin, Michael E.; Schroeder, Daniel V. An introduction to quantum field theory; Taylor& Francis Ltd, 2019. [Google Scholar]
- Green, M. B.; Schwarz, J. H.; Witten, E. Superstring theory. In 2; Cambridge Monographs on Mathematical Physics, 1988; Volume 1. [Google Scholar]
- Polchinski, J. String theory, Volume 1,2. Cambridge University Press. 1998. [Google Scholar]
- Zwiebach, B. A first course in string theory; Cambridge University Press, 2004. [Google Scholar]
- Erbin, H. String field theory; Springer, 2021. [Google Scholar]
- Ooguri, H. Geometry as seen by string theory. Japanese Journal of Mathematics 2009, 4, 95–120, arXiv:0901.1881. [Google Scholar] [CrossRef]
- Witten, E. D-branes and K-theory. JHEP 1998, 9812, 019, arXiv:hep-th/9810188. [Google Scholar] [CrossRef]
- Dijkgraaf, R.; Witten, E. Topological gauge theories and group cohomology. Commun. Math. Phys. 1990, 129, 393–429. [Google Scholar] [CrossRef]
- Witten, E. Small instantons in string theory. Nucl. Phys. B 1996, arXiv:hep460, 541–559. [Google Scholar] [CrossRef]
- Atiyah, M. Topological quantum field theories. Publications Mathématiques de l’IHÉS 1988, 68, 175–186. [Google Scholar] [CrossRef]
- Gukov, S.; Kapustin, A. Topological quantum field theory, nonlocal operators, and gapped phases of gauge theories. arXiv 2013, arXiv:1307.4793. [Google Scholar] [CrossRef]
- Schwarz, A. Topological quantum field theories. arXiv 2000, arXiv:hep. [Google Scholar]
- Witten, E. Topological quantum field theory. Communications in Mathematical Physics 1988, 117, 353–386. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press, 2012. [Google Scholar]
- Zwicky, F. The redshift of extragalactic nebulae. Helv. Phys. Acta 1933, 6, 110–127. [Google Scholar]
- Planck collaboration. Planck 2018 results. VI. Cosmological parameters. A&A 2020, 641, A6. arXiv arXiv:1807.06209.
- Hubble, E. P. A relation between distance and radial velocity among extra-galactic nebulae. In Proceedings of the National Academy of Sciences of the United States of America; Volume 1929, 15, Issue 3, pp. 168–173.
- Hu, J. -P.; Wang, F. -Y. Hubble tension: The evidence of new physics. Universe 2023, 2023, 94. [Google Scholar] [CrossRef]
- Einstein, A. Cosmological Considerations in the General Theory of Relativity. In Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.); 1917; pp. 142–152. [Google Scholar]
- Riess, A.G.; et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. The astronomical journal 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys.J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Sorkin, R. D. Is the cosmological "constant" a nonlocal quantum residue of discreteness of the causal set type? AIP Conf. Proc. 0710.1675. 2007, 957, 142–153. [Google Scholar] [CrossRef]
- Peebles, P. J. E. Status of the ΛCDM theory: Supporting evidence and anomalies. Contribution to the Royal Society Discussion Meeting on Challenging the standard cosmological model. arXiv 2024, arXiv:2405.18307. [Google Scholar] [CrossRef]
- Balazs, C.; Bringmann, T.; Kahlhoefer, F.; White, M. A primer on dark matter. Preprint of a chapter for the ’Encyclopedia of Astrophysics’ (Editor-in-Chief Ilya Mandel, Section Editor Cullan Howlett) to be published by Elsevier as a Reference Module. arXiv 2024, arXiv:2411.05062. [Google Scholar]
- Burgess, C. P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. Lectures given to the Les Houches Summer School "Post-Planck Cosmology". arXiv, 2013. [Google Scholar]
- Padilla, A. Lectures on the cosmological constant problem. Lectures prepared for the X. Mexican School on Gravitation and Mathematical Physics, 2015. [Google Scholar]
- Peracaula, J. S. The Cosmological Constant Problem and Running Vacuum in the Expanding Universe. Phil. Trans. Roy. Soc. Lond. A 2022, arXiv:2203.13757380, 20210182. [Google Scholar] [CrossRef] [PubMed]
- Wondrak, M. F. The Cosmological Constant and Its Problems: A Review of Gravitational Aether. Collection of the fifth international conference on "Experimental Search for Quantum Gravity", held at FIAS, Frankfurt am Main (Germany), 2017; Springer. [Google Scholar]
- Clifton, T.; Ferreira, P. G.; Padilla, A.; Skrodis, C. Modified gravity and cosmology. Physics Reports 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Carullo, G. Enhancing modified gravity detection from gravitational-wave observations using the Parametrized ringdown spin expansion coefficients formalism. Phys. Rev. D 2021, 103, 124043. [Google Scholar] [CrossRef]
- Novák, J. Generalization of the Coleman-Mandula theorem and the ring paradigm. In Proceedings of the conference ISQS 28. Journal of Physics: Conference Series, 2024; p. 2912 012016. [Google Scholar]
- Novák, J.; Trivedi, O. The old problem of the cosmological constant solved? Sent for the publication. arXiv 2025, arXiv:2505.22553. [Google Scholar]
- Novák, J. Graviton as a phonon and dark energy problem. Sent for the publication. 2025.
- Novák, J.; Trivedi, O. Late-Time Acceleration of the Universe using Rings. Sent for publication. 2025.
- Steinhardt, P.; Turok, N. A cyclic model of the universe. arXiv 2001, arXiv:hep-th/0111030. [Google Scholar] [CrossRef]
- Green, M. B.; Schwarz, J. H.; Witten, E. Superstring theory. In 2; Cambridge University Press, 2012; Volume 1. [Google Scholar]
- Polchinski, J. String theory, Volume 1,2. Cambridge University Press.
- Veneziano, G. Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories. Nuovo Cimento A 1968, 57, 190–197. [Google Scholar] [CrossRef]
- Danielsson, U. H.; Van Riet, T. What if string theory has no de Sitter vacua? International Journal of Modern Physics D 2018, arXiv:1804.0112027(12), 1830007–298. [Google Scholar] [CrossRef]
- Berglund, P.; H\"ubsch, T.; Minic, D. On dark energy and quantum gravity. Int. J. Mod. Physics D 2019, 28(14), 1902003, arXiv:1905.09463. [Google Scholar] [CrossRef]
- Maldacena, J. M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, arXiv:arXiv:hep-th/97112002, 231–252. [Google Scholar] [CrossRef]
- Ramallo, A. V. Introduction to the AdS/CFT correpondence. arXiv 2013, arXiv:1310.4319. [Google Scholar]
- Hubeny, V. E. The AdS/CFT correspondence. Class.Quant.Grav. 2015, arXiv:1501.0000732, 124010. [Google Scholar] [CrossRef]
- Fernández, D. Rodríguez. Study of the AdS/CFT correspondence and its applications to strongly coupled phenomena. PhD Thesis, 2018. [Google Scholar]
- Chagnet, N. Applications of AdS/CFT to strongly correlated matter: From numerics to experiments. Science 2023, 381, 790–793. [Google Scholar]
- Barrat, J. Line defects in conformal field theory: From weak to strong coupling; Springer Nature, 2025. [Google Scholar]
- Harlow, D. Black holes in quantum gravity. In The Encyclopedia of Cosmology (Set 2): Black Holes; Haiman, Z., Ed.; World Scientific: New Jersey, 2023. [Google Scholar]
- Marolf, D. Black Holes, AdS, and CFTs. Gen.Rel.Grav 2009, 41, 903–917. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kinoshita, S.; Murata, K. Imaging black holes through AdS/CFT. Phys. Rev. D 2020, 101, 066018. [Google Scholar] [CrossRef]
- Policastro, G.; Son, D. T.; Starinets, A. O. From AdS/CFT correspondence to hydrodynamics. II. Sound waves. JHEP 2002, 0212, 054. [Google Scholar] [CrossRef]
- Rangamani, M. Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence. Class.Quant.Grav. 2009, 26, 224003, arXiv:0905.4352. [Google Scholar]
- Hu, Y. - P.; Sun, P.; Zhang, J. -H. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity. Phys.Rev.D 2011, arXiv:1103.377383, 126003. [Google Scholar] [CrossRef]
- Horowitz, G. T. Introduction to holographic superconductors. In Proceedings of the 5th Aegean Summer School, "From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence", 2010. [Google Scholar]
- Cubrovic, M.; Zaanen, J.; Schalm, K. String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid. Science 2009, 325, 439–444. [Google Scholar] [CrossRef]
- Son, D. T. Toward an AdS/cold atoms correspondence: A geometric realization of the Schroedinger symmetry. Phys.Rev.D 2008, 78, 046003, arXiv:0804.3972. [Google Scholar] [CrossRef]
- Rovelli, C. Loop quantum gravity; Cambridge University Press, 2007. [Google Scholar]
- Rovelli, C.; Vidotto, F. Covariant loop quantum gravity; Cambridge University Press, 2014. [Google Scholar]
- Smolin, L.; Rovelli, C. Spin networks and quantum gravity. Phys. Rev. D 1995, 52, 5743–5759. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. A first course in loop quantum gravity; Oxford University Press, 2011. [Google Scholar]
- Perez, A. Black holes in loop quantum gravity. Reports on Progress in Physics 2017, arXiv:1703.0914980. [Google Scholar] [CrossRef] [PubMed]
- Hooft, G.’t. A planar diagram theory for strong interactions. Nucl. Phys. B 1974, 72, 461. [Google Scholar] [CrossRef]
- Krajewski, T. Group field theory. arXiv 2012, arXiv:1210.6257v1. [Google Scholar]
- Carrozza, S. Tensor models and group field theories: Combinatorics, large N and renormalization. arXiv 2024, arXiv:2404.07834. [Google Scholar] [CrossRef]
- Oriti, D. Approaches to quantum gravity; Cambridge University Press, 2009. [Google Scholar]
- Hawking, S. W.; King, A. R.; McCarthy, P. J. A new topology for curved space-time which incorporates the causal, differential, and conformal structures. J. Math. Phys. 1976, 17, 174–181. [Google Scholar] [CrossRef]
- Malament, D. B. The class of continuous timelike curves determines the topology of spacetime. J. Math. Phys. 1977, 18, 1399–1404. [Google Scholar] [CrossRef]
- Dribus, B. F. Discrete causal theory. In Proceedings of the SILARG VII Conference, Cocoyocan, Mexico, 2017; Springer; pp. 150–173. [Google Scholar]
- Kuznetsov, Y. On cosmological constant in causal set theory. arXiv 2007, arXiv:0706.0041. [Google Scholar] [CrossRef]
- Brightwell, G.; Luczak, M. The mathematics of causal sets. In Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications; Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P., Eds.; Springer, 2016; p. 159. [Google Scholar]
- Dowker, F.; Zalel, S. Evolution of universes in causal set cosmology. Comptes rendus - Physique 2017, arXiv:1703.0755618, 246–253. [Google Scholar] [CrossRef]
- Ahmed, M.; Dodelson, S.; Greene, P. B.; Sorkin, R. Everpresent Λ. Phys.Rev.D 2004, 69, 103523. [Google Scholar] [CrossRef]
- Sorkin, R. D. Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys. 1997, 36, 2759–2781, arXiv:gr-qc/9706002. [Google Scholar] [CrossRef]
- Machet, L.; Wang, J. On the continuum limit of Benincasa-Dowker-Glaser causal set action. Class. Quantum Grav. 2021, 38, 015010, arXiv:2007.13192v2. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative geometry; Academic Press, 1990. [Google Scholar]
- Singh, T. P. Proposal for a new quantum theory of gravity. Zeitschrift für Naturforschung A 2019, 74, 617, arXiv:1903.05402. [Google Scholar] [CrossRef]
- Connes, A.; Douglas, M. R.; Schwarz, A. Noncommutative geometry and matrix theory: Compactification on tori, 1998; hep-th/9711162.
- Ishibashi, N.; Kawai, H.; Kitazawa, Y.; Tsuchiya, A. A Large-N reduced model as superstring. arXiv 1996, arXiv:hep-th/9612115. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. A nonperturbative Lorentzian path integral for gravity. Phys. Rev. Lett. 2000, 85, 924–927, arXiv:hep-th/0002050. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Dynamically triangulating Lorentzian quantum gravity. Nucl. Phys. B 2001, 610, 347–382, arXiv:hep-th/0105267. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Emergence of a 4D world from causal quantum gravity. Phys. Rev. Lett. 2004, 93, 131301, arXiv:hep-th/0404156. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Spectral dimension of the universe. Phys. Rev. Lett. 2005, 95, 17, arXiv:hep-th/0505113. [Google Scholar] [CrossRef] [PubMed]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Reconstructing the universe. Phys. Rev. D 2005, 72, 064014, arXiv:hep-th/0505154. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R. Second- and first-order phase transitions in causal dynamical triangulations. Phys. Rev. D 2012, 85, 124044, arXiv:1205.1229. [Google Scholar] [CrossRef]
- Loll, R. Quantum gravity from causal dynamical triangulations: A review. Class. Quantum Grav. 2019, 37, 013002, arXiv:1905.08669. [Google Scholar] [CrossRef]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Physical Review D 1998, 57, 971. [Google Scholar] [CrossRef]
- Percacci, R. A short introduction to asymptotic safety. In the proceedings of the conference "Time and matter", Budva, Montenegro, 2010. [Google Scholar]
- Niedermaier, M. The Asymptotic Safety Scenario in Quantum Gravity - An Introduction. Class. Quantum Grav. 2006, 24, R171–R230, arXiv:gr-qc/0610018. [Google Scholar] [CrossRef]
- Eichhorn, A. Asymptotic safe gravity. In the proceedings of the 57th Course of the Erice International School of Subnuclear Physics, "In search for the unexpected", 2019. [Google Scholar]
- Saueressig, F.; Alkofer, N.; D’Odorico, G.; Vidotto, F. Black holes in Asymptotically Safe Gravity. In Frontiers of Fundamental Physics; Proceeding of science 174, 2014. [Google Scholar]
- Bonnano, A.; Saueressig, F. Asymptotically safe cosmology - a status report. Comptes Rendus Physique 2017, 18. arXiv:1702.04137. [Google Scholar] [CrossRef]
- Verlinde, E. P. On the origin of gravity and the laws of Newton. JHEP 2011, 1104, 029. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R. G.; Minić, D. Modular Spacetime and Metastring Theory. J. Phys. Conf. Ser. 2017, 804, 012032. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R. G.; Minić, D. Noncommutativity of closed string zero modes. Phys. Rev. D 2017, 6, 066003, arXiv:1707.00312. [Google Scholar] [CrossRef]
- Grosse, H.; Wulkenhaar, R. Self-Dual Noncommutative ϕ4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 2014, 329, 1069–1130, arXiv:1205.0465. [Google Scholar] [CrossRef]
- Grosse, H.; Wulkenhaar, R. Construction of the ϕ4 -quantum field theory on non-commutative Moyal space. RIMS Kokyuroku 2013, 1904, 67–105, arXiv:1402.1041. [Google Scholar]
- Berglund, P.; Hübsch, T.; Minić, D. De Sitter spacetimes from warped compactifications of IIB string theory. Phys. Lett. B 2002, 534, 147–154, arXiv:hep-th/0112079.. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minić, D. Relating the cosmological constant and supersymmetry breaking in warped compactifications of IIB string theory. Phys. Rev. D 2003, 67, 041901, arXiv:hep-th/0201187. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minić, D. Dark Energy and String Theory. arXiv 2019. arXiv:1905.08269. [Google Scholar] [CrossRef]
- Witten, E. Is supersymmetry really broken? Int. J. Mod. Phys. A 1995, 10, 1247–1248, arXiv:hep-th/9409111. [Google Scholar] [CrossRef]
- Jejjala, V.; Leigh, R. G.; Minić, D. The cosmological constant and the deconstruction of gravity. Phys. Lett. B 2003, 556, 71–79, arXiv:hep-th/0212057. [Google Scholar] [CrossRef]
- Becker, K.; Becker, M.; Strominger, A. Three-dimensional supergravity and the cosmological constant. Phys. Rev. D 1995, 51, R6603–R6607, arXiv:hep-th/9502107. [Google Scholar] [CrossRef]
- Douglas, M. R.; Nekrasov, N. A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029, arXiv:hep-th/0106048. [Google Scholar] [CrossRef]
- Szabo, R. J. Quantum field theory on noncommutative spaces. Phys. Rept. 2003, 378, 207–299, arXiv:hep-th/0109162. [Google Scholar] [CrossRef]
- Grosse, H.; Wulkenhaar, R. Renormalization of ϕ4 theory on noncommutative R4 in the matrix base. Commun. Math. Phys. 2005, 256, 305–374, arXiv:hep-th/0401128. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R. G.; Minić, D. Modular Spacetime and Metastring Theory. J. Phys. Conf. Ser. 2017, 804, 012032. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R. G.; Minić, D. Noncommutativity of closed string zero modes. Phys. Rev. D 2017, 96, 066003, arXiv:1707.00312. [Google Scholar] [CrossRef]
- Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 2017, 118, 021102. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Sudarsky, D.; Bjorken, J. D. A microscopic model for an emergent cosmological constant. arXiv 2018, arXiv:1804.07162. [Google Scholar] [CrossRef]
- Perez, A.; Sudarsky, D. Dark energy from quantum gravity discreteness. Phys. Rev. Lett. 2019, 122, 221302, arXiv:1711.05183. [Google Scholar] [CrossRef] [PubMed]
- Oriti, D.; Pang, X. Late-time cosmic acceleration from quantum gravity. arXiv 2025, arXiv:2502.12419. [Google Scholar] [CrossRef]
- Oriti, D.; Pang, X. Phantom like dark energy from quantum gravity. JCAP 2021, 12, 040, arXiv:2105.03751. [Google Scholar] [CrossRef]
- Oriti, D.; Sindoni, L.; Wilson-Ewing, E. Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates. Class. Quant. Grav. 2016, 33, 224001. 1602.05881. [Google Scholar] [CrossRef]
- Sorkin, R. D. Spacetime and Causal Sets. In Relativity and Gravitation: Classical and Quantum; D’Olivo, JC, Ed.; World Scientific: Singapore, 1991; pp. 68–90. [Google Scholar]
- Surya, S. The causal set approach to quantum gravity. Living Reviews in Relativity. Volume 2019, 22, 5. [Google Scholar] [CrossRef]
- Yazdi, Y. Everything You always wanted to know about how causal set theory can help with open questions in cosmology, but were afraid to ask. Modern Physics Letters A. 2024, 39, 2330003. [Google Scholar] [CrossRef]
- Sorkin, R. Big extra dimensions make lambda too small. Braz. J. Phys. 2005, 35, 280–283, gr-qc/0503057. [Google Scholar] [CrossRef]
- Ahmed, M.; Dodelson, S.; Greene, P. B.; Sorkin, R. Everpresent Λ. Phys Rev D 2004, 69, 103523. [Google Scholar] [CrossRef]
- Barrow, J. D. A strong constraint on ever-present lambda. Phys. Rev. D 2007, 75, 06. [Google Scholar] [CrossRef]
- Zuntz, J. A. The cosmic microwave background in a causal set universe. Phys. Rev. D 0711.2904. 2008, 77, 043002. [Google Scholar] [CrossRef]
- Zwane, N.; Afshordi, N.; Sorkin, R. D. Cosmological tests of everpresent Λ. Class Quantum Grav 1703.06265. 2018, 35, 194002. [Google Scholar] [CrossRef]
- Singh, T. P. Dark energy as a large scale quantum gravitational phenomenon. Modern Physics Letters A 1911.02955. 2020, 35, 195. [Google Scholar] [CrossRef]
- Singh, T. P. Proposal for a new quantum theory of gravity II: Spectral equation of motion for the atom of space-time-matter. Zeitschrift für Naturforschung A 2019, 74, 989, arXiv:1906.08248. [Google Scholar] [CrossRef]
- Palemkota, M.; Singh, T. P. Proposal for a new quantum theory of gravity III: Equations for quantum gravity, and the origin of spontaneous localisation. Zeitschrift für Naturforschung A 2020, 75, 143, arXiv:1908.04309. [Google Scholar] [CrossRef]
- Tomita, M. On canonical forms of von neumann algebras. Fifth functional analysis symposium at Tohoku University, Sendai, 1967; pp. 101–102. [Google Scholar]
- Connes, A.; Rovelli, C. Von neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories. Class. Quant. Grav. 1994, 11, 2899. [Google Scholar] [CrossRef]
- Singh, T. P. Proposal for a new qantum theory of gravity v: Karolyhazy uncertainty. 2019. [Google Scholar]
- Adler, S. L. Quantum theory as an emergent phenomenon; Cambridge University Press, 2004. [Google Scholar]
- Singh, T. P. Proposal for a new qantum theory of gravity v: Karolyhazy uncertainty relation, Planck scale foam, and holography. arXiv arXiv:1910.06350.
- Bassi, A.; Lochan, K.; Satin, S.; Singh, T. P.; Ulbricht, H. Models of wave function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 2013, 85, 471. [Google Scholar] [CrossRef]
- Ng, Y. J. Entropy and gravitation: From black hole computers to dark energy and dark matter. Entropy 2019, 21. arXiv:1910.00040v1. [Google Scholar] [CrossRef]
- Ambjørn, J.; Gizbert-Studnicki, J.; Görlich, A.; Németh, D. IR and UV limits of causal dynamical triangulations and their relations to functional renormalization group. arXiv 2024, arXiv:2411.02330. [Google Scholar]
- Ambjørn, J.; Loll, R. Causal Dynamical Triangulations: Gateway to Nonperturbative Quantum Gravity. arXiv 2024, arXiv:2401.09399. [Google Scholar] [CrossRef]
- Ambjørn, J.; Gizbert-Studnicki, J.; Görlich, A.; Németh, D. Is lattice quantum gravity asymptotically safe? Making contact between causal dynamical triangulations and the functional renormalization group. Phys. Rev. D 2024, 110, 126006, arXiv:2408.07808. [Google Scholar] [CrossRef]
- Ambjørn, J.; Watabiki, Y. Late time acceleration of our Universe caused by the absorption of baby universes. arXiv 2024, arXiv:2401.06931. [Google Scholar] [CrossRef]
- Ambjørn, J.; Watabiki, Y. Is the present acceleration of the Universe caused by merging with other universes? JCAP 2023, 12, 011, arXiv:2308.10924. [Google Scholar] [CrossRef]
- Ambjørn, J.; Watabiki, Y. The large-scale structure of the universe from a modified Friedmann equation. Mod. Phys. Lett. A 2023, 38, 2350068. [Google Scholar] [CrossRef]
- Ambjørn, J.; Watabiki, Y. Easing the Hubble constant tension. Mod. Phys. Lett. A 2022, 37, 2250041, arXiv:2111.05087. [Google Scholar] [CrossRef]
- Ambjørn, J.; Watabiki, Y. Is the present acceleration of the Universe caused by merging with other universes? JCAP 2023, 12, 011, arXiv:2308.10924. [Google Scholar] [CrossRef]
- Anagnostopoulos, F. K.; Basilakos, S.; Kofinas, G.; Zarikas, V. Constraining the Asymptotically Safe Cosmology: Cosmic acceleration without dark energy. JCAP 2019, 02, 053, arXiv:1806.10580. [Google Scholar] [CrossRef]
- Anagnostopoulos, F. K.; Kofinas, G.; Zarikas, V. IR quantum gravity solves naturally cosmic acceleration and its coincidence problem. Int. J. Mod. Phys. D 2019, 28, 1944013, arXiv:2102.07578. [Google Scholar] [CrossRef]
- Bonanno, A.; Saueressig, F. Asymptotically safe cosmology – A status report. Comptes Rendus Physique 2017, 18, 254–264, arXiv:1702.04137. [Google Scholar] [CrossRef]
- Mandal, R.; Gangopadhyay, S.; Lahiri, A. Cosmology with modified continuity equation in asymptotically safe gravity. arXiv 2020, arXiv:2010.09716. [Google Scholar] [CrossRef]
- Bonanno, A.; Carloni, S. Dynamical system analysis of cosmologies with running cosmological constant from quantum Einstein gravity. New J. Phys. 2012, 14, 025008, arXiv:1112.4613. [Google Scholar] [CrossRef]
- Cohen, A. G.; Kaplan, D. B.; Nelson, A.E. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 4971. [Google Scholar] [CrossRef]
- Li, M. A model of holographic dark energy. Phys. Lett. B 2004, 603, 1–5. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav. 2006, 38, 1285–1304. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, M. Holographic dark energy. Phys. Rept. 2017, 696, 1–57, arXiv:1612.00345. [Google Scholar] [CrossRef]
- Trivedi, O.; Scherrer, R. J. New perspectives on future rip scenarios with holographic dark energy. Phys. Rev. D 2024, 110, 023521, arXiv:2404.08912. [Google Scholar] [CrossRef]
- Bidlan, A.; Moniz, P.; Trivedi, O. Reconstructing fractional holographic dark energy with scalar and gauge fields. Eur. Phys. J. C 2025, 85, 520, arXiv:2502.00292. [Google Scholar] [CrossRef]
- Blitz, S.; Scherrer, R. J.; Trivedi, O. The long freeze: An asymptotically static universe from holographic dark energy. JCAP 2025, 09, 063, arxiv:2409.11420. [Google Scholar] [CrossRef]
- Trivedi, O.; Bidlan, A.; Moniz, P. Fractional holographic dark energy. Phys. Lett. B 2024, 858, 139074, arxiv:2407.16685. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Early and late universe holographic cosmology from a new generalized entropy. Phys. Lett. B 2022, 831, 137189, arxiv:2205.08876. [Google Scholar] [CrossRef]
- Verlinde, E. P. Emergent gravity and the dark universe. SciPost Phys. 2017, 2, 016. [Google Scholar] [CrossRef]
- Trivedi, O. Thermodynamic split conjecture and an observational test for cosmological entropy. arXiv 2025. [Google Scholar] [CrossRef]
- Blas, D.; Ivanov, M. M.; Sawicky, I.; Sibiryakov, S. On constraining the speed of gravitational waves following GW150914. Pisma Zh. Eksp. Teor. Fiz.;JETP Lett. 2016, 103, 708-710 624-626, arxiv:1602.04188v2. [Google Scholar] [CrossRef]
- White, Ch. D. The classical double copy; World Scientific, 2024. [Google Scholar]
- M. Maggiore, Gravitational Waves. In Theory and experiments; Oxford University Press, 2008; Volume 1.
- Feynman, R. P. Statistical Mechanics; Westview Press.
- Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic dark matter. Phys.Rev.D 1972 2002, 66, 021301. [Google Scholar]
- Mashoon, B. Nonlocal Gravity. arXiv 2011. arxiv:1101.3752. [Google Scholar]
- Capozziello, S.; Bajardi, F. Non-Local Gravity Cosmology: An Overview. arXiv 2022. [Google Scholar] [CrossRef]
- Mavromatos, N. E. Lorentz symmetry violation in string-inspired effective modified gravity theories. KCL-PH-TH/2022-22 2022. arxiv:2205.07044. [Google Scholar]
- Alfaro, J.; Reyes, M.; Morales-Tecotl, H. A.; Urrutia, L. F. On alternative approaches to Lorentz violation in loop quantum gravity inspired models. Phys.Rev. D 2004, 70, 084002. [Google Scholar] [CrossRef]
- Camelia, G. A. On the fate of Lorentz symmetry in loop quantum gravity and noncommutative spacetimes. arXiv 2002. [Google Scholar] [CrossRef]
- Mariz, T.; Nascimento, J. R.; Petrov, A. Yu. 2205.02594; Lorentz symmetry breaking– classical and quantum aspects. 2022.
- Schreck, M. From non-commutative spacetimes to the Lorentz symmetry violation. J. Phys. Conf. Ser. 2014, 563, 012026. [Google Scholar] [CrossRef]
- Ferrari, A. F.; Girotti, H. O.; Gomes, M. Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections. Phys.Rev. D 2006, 73, 047703, arxiv:hep-th/0510108. [Google Scholar] [CrossRef]
- Drummond, I. T. Lorentz Symmetry Violation in QCD and the Frustration of Asymptotic Freedom. Phys. Rev. D 2020, 101, 085004, arxiv:1912.03087. [Google Scholar] [CrossRef]
- Erler, T.; Maccaferri, C. The Phantom Term in Open String Field Theory. JHEP 1201.5122. 2012, 06, 084. [Google Scholar] [CrossRef]
- Elizalde, E.; Hurtado, J. Q. Phantom and quantum matter in an Anti-de Sitter Universe. Mod.Phys.Lett. A 2003, 19, 29–36. [Google Scholar] [CrossRef]
- Gumjudpai, B. Coupled phantom field in loop quantum cosmology. In Thai Journal of Physics Series 2007, 3, Proceedings of the SIAM Physics Congress 2007 and the Thai National Astronomy Meeting; 2007. arxiv:0706.3467. [Google Scholar]
- Samart, D.; Gumjudpai, B. Phantom field dynamics in loop quantum cosmology. Phys. Rev. D 2007, 76, 043514. [Google Scholar] [CrossRef]
- Carlip, S. Dimension and dimensional reduction in quantum gravity. arXiv 2017. arxiv:1705.05417. [Google Scholar] [CrossRef]
- Atick, J. J.; Witten, E. The Hagedorn Transition and the Number of Degrees of Freedom of String Theory. Nucl. Phys. B 1988, 310, 291. [Google Scholar] [CrossRef]
- Magliaro, E.; Perini, C.; Modesto, L. Fractal Space-Time from Spin-Foams. arXiv 2009. [Google Scholar] [CrossRef]
- Carlip, S. Dimensional reduction in causal set gravity. Class. Quant. Grav. 2015, 32, 232001, arxiv:1506.08775. [Google Scholar] [CrossRef]
- Nozari, K.; Hosseinzadeh, V.; Gorji, M. A. Dimensional reduction in causal set gravity. Phys. Lett. B 2015, 750, 218, arxiv:1504.07117. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Spectral dimension of the universe. Phys. Rev. Lett. 2005, 95, 171301, arxiv:hep-th/0505113. [Google Scholar] [CrossRef]
- Lauscher, O.; Reuter, M. Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 2002, 65, 025013, arxiv:hep-th/0108040. [Google Scholar] [CrossRef]
- Percacci, R.; Perini, D. On the Ultraviolet Behaviour of Newton’s constant. Class. Quant. Grav. 2004, 21, 5035, arxiv:hep-th/0401071. [Google Scholar] [CrossRef]
- Litim, D. F. Fixed points of quantum gravity. Phys.Rev.Lett 2006, 92, 201301. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, B. S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Holography from loop quantum gravity. Int.J.Mod.Phys.D 2008, 17, 545–549. [Google Scholar] [CrossRef]
- Chirco, G. Holographic Entanglement in Group Field Theory. Universe 2019, 5, 211. [Google Scholar] [CrossRef]
- Li, M.; Wu, Y.-S. Holography and non-commutative Yang-Mills. Phys.Rev.Lett. 2000, 84, 2084–2087. [Google Scholar] [CrossRef]
- Linde, A. A brief history of the mutliverse. arXiv 2015. arxiv:1512.01203. [Google Scholar]
- Steinhardt, P.; Turok, N. A cyclic model of the universe. arXiv 2001. arxiv:hep-th/0111030. [Google Scholar] [CrossRef] [PubMed]
- Novák, J.; Trivedi, O. The cosmological inflation inside the cyclic model of the universe. In preparation. 2026. [Google Scholar]
- Hořava, P. Quantum gravity at a Lifshitz point. Phys.Rev.D 2009, 79, 084008, arxiv:0901.3775. [Google Scholar] [CrossRef]
- McInnes, B. JHEP 0208, 029; The dS/CFT correspondence and the big smash. 2002.
- Alexander, S.; Brandenberger, R.; Easson, D. Brane Gases in the Early Universe. Phys.Rev. D 2000, 62, 103509, arxiv:hep-th/0005212. [Google Scholar] [CrossRef]
- Brandenberger, R.; Easson, D. A.; Kimberly, D. Loitering Phase in Brane Gas Cosmology. Nucl.Phys. B 2002, 623, 421–436, arxiv:hep-th/0109165. [Google Scholar] [CrossRef]
- McInnes, B. The phantom divide in string gas cosmology. Nucl. Phys. B 2005, 718, 55–82, arxiv:hepth/0502209. [Google Scholar] [CrossRef]
- Trout, A. D. Dark energy from discrete spacetime. PLoS ONE 2013, 8, e80826. [Google Scholar] [CrossRef]
- Thomas, S. J.; et al. Vera C. Rubin Observatory: Telescope and site status. Proc. SPIE 2020, 11445, 68–82. [Google Scholar]
- Ivezić, Ž.; et al. LSST: From science drivers to reference design and anticipated data products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Bailey, V. P.; et al. Nancy Grace Roman Space Telescope coronagraph instrument overview and status. Proc. SPIE 2023, 12680, 283–293. [Google Scholar]
- Dewdney, P. E.; Hall, P. J.; Schilizzi, R. T.; Lazio, T. J. L. W. The Square Kilometre Array. Proc. IEEE 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Reitze, D.; et al. Cosmic Explorer: The US contribution to gravitational-wave astronomy beyond LIGO. arXiv 2019. arxiv:1907.04833. [Google Scholar]
| 1 | First of all, the gravitational rings are created among the most massive objects with the highest probability. So, there is included also probabilistic description in the fundamentals of RP. |
| 2 | The details are included in [37]. |
| 3 | Note that the delta parameter is supposed to be very small. |
| 4 | We did not mention, for example, the models of Petr Hořava, [193], in this article because the applications to cosmology are still under development. There are also interesting models based on the works of Brett McInnes, [194,195,196,197], and Aaron Trout, [198], which, however, were not central to the discussion we were having in this article. |
| Phenomenology\Approach to QG | ST | LQG | GFT | CSA | NG | CDT | AS | EG | RP |
|---|---|---|---|---|---|---|---|---|---|
| Nonlocal theory | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Superluminal signalling | ✓ | ✓ | ✓ | × | ✓ | × | ✓ | ✓ | ✓ |
| Phantom field | ✓ | ✓ | ✓ | × | × | × | × | × | ✓ |
| Dimensional reduction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ |
| Holographic principle | ✓ | ✓ | ✓ | × | ✓ | ✓ | × | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
