Submitted:
16 January 2026
Posted:
19 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background
2.1. Hydrogen Production from Ammonia
2.2. Overiew of Ammonia Decomposition Types
2.3. Role of Modelling and Simulation
2.4. Gap in Current Literature
3. Methodology
3.1. Systematic Review Process
- i.
- execution of a comprehensive and reproducible database search,
- ii.
- assessment of search completeness through iterative recall checking to ensure adequate coverage of key and recurring studies within the field, and
- iii.
3.1.1. Literature Review Search
3.1.2. Screening, Filtering, and Eligibility Criteria
- Publication year: 2014–2025
- Subject area: Chemical Engineering
- Document type: Article and Review
- Language: English
- Keyword relevance: ammonia, ammonia decomposition, hydrogen production
3.1.3. Inclusion and Exclusion Criteria
- Studies must focus on ammonia decomposition or ammonia cracking.
- The study must contain a modelling or simulation component, including but not limited to:process simulation, CFD, kinetic modelling, DFT, MD, membrane modelling, ML-based models, or any numerical analysis.
- Studies presenting integrated analysis (e.g., TEA or reactor-scale modelling) were considered relevant.
- Papers not related to ammonia decomposition (e.g., ammonia synthesis, NOx reduction, fertilizer studies).
- Papers containing purely experimental work with no simulation or modelling component.
- Papers focusing on hydrogen production routes unrelated to ammonia.
3.1.4. Scope Clarification
3.1.5. PRISMA Flow Description
3.2. Data Extraction and Classification Framework
3.2.1. Synthesis Methods Classification
3.2.2. Modelling Methods Classification
3.3. Technological Updates
4. Results and Discussion
4.1. Bibliographical Analysis
4.2. Technology Updates by Synthesis Pathway and Modelling Method
4.2.1. Thermo-Catalytic Ammonia Decomposition
- Reactor-scale numerical and CFD modelling
- Multi-scale and cross-scale modelling
- Kinetic and thermochemical mechanism modelling
- Thermodynamic, energy and exergy-based modelling
4.2.2. Plasma-Catalytic Ammonia Decomposition
- Reactor-scale modelling of intensified plasma systems
- Kinetic/mechanistic modelling for plasma activation
- Energy-flow modelling
4.3. Electro-Enabled Ammonia Decomposition
- Thermodynamic/energy/exergy modelling of electrified systems
- Reactor-scale optimisation of electrified heating
4.4. Photothermal and Solar-Thermal Assisted Decomposition
- Conceptual thermal/device modelling
- Kinetic modelling of solar-thermal multichannel membrane reactors
- Reactor-scale modelling with irradiation-driven boundaries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdelghany, M.B.; Shafiqurrahman, A.; Al-Durra, A.; Mohamed, M.; Hu, J.; Vaccaro, A.; Gao, F.; El Moursi, M.S. Hydrogen energy systems for decarbonizing smart cities and industrial applications: A review. Renew. Sustain. Energy Rev. 2025, 226, 116370. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.-W. Hydrogen - A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Venizelou, V.; Poullikkas, A. The potential of Green Hydrogen as an alternative to Natural Gas Power Generation. Renew. Sustain. Energy Rev. 2025, 224, 116028. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2022, 173, 113113. [Google Scholar] [CrossRef]
- Ali, D.N.H.A.P.H.O.; Suhaimi, H.; Abas, P.E. Membrane-Based Hydrogen Production: A Techno-Economic Evaluation of Cost and Feasibility. Hydrogen 2025, 6, 9. [Google Scholar] [CrossRef]
- Chu, C.C.; Suhainin, M.D.; Ali, D.N.H.A.P.H.O.; Lim, J.Y.; Swee, P.S.; Raymundo, J.Y.; Tan, R.X.H.; Yap, M.K.; Khoo, H.F.; Suhaimi, H.; et al. A Techno-Economic Assessment of Steam Methane Reforming and Alkaline Water Electrolysis for Hydrogen Production. Hydrogen 2025, 6, 23. [Google Scholar] [CrossRef]
- THE 17 GOALS | Sustainable Development. 20 Sep 2023. Available online: https://sdgs.un.org/goals.
- Halder, P.; Babaie, M.; Salek, F.; Haque, N.; Savage, R.; Stevanovic, S.; Bodisco, T.A.; Zare, A. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2024, 52, 973–1004. [Google Scholar] [CrossRef]
- Hammond, J.; Rosenberg, M.; Brown, S. Understanding costs in hydrogen infrastructure networks: A multi-stage approach for spatially-aware pipeline design. Int. J. Hydrogen Energy 2025, 102, 430–443. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Ball, M.; Weeda, M. The hydrogen economy—Vision or reality? Int. J. Hydrogen Energy 2015, 40, 7903–7919. [Google Scholar] [CrossRef]
- IEA.ORG. International Energy Agency [Internet]. 2025. Available online: https://www.iea.org.
- Hydrogen Production and Infrastructure Projects Database - Data product - IEA. 16 Dec 2025. Available online: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database.
- Voldsund, M.; Gardarsdottir, S.O.; De Lena, E.; Pérez-Calvo, J.-F.; Jamali, A.; Berstad, D.; Fu, C.; Romano, M.; Roussanaly, S.; Anantharaman, R.; et al. Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. Energies 2019, 12, 559. [Google Scholar] [CrossRef]
- Haji Rhyme, M. S.; Pg Haji Omar Ali, D. N. H. A.; Suhaimi, H.; Abas, P. E. Technological Trends in Ammonia-to-Hydrogen Production: Insights from a Global Patent Review; Preprints, 2026. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrog. Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.; Bowen, P. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Sources 2008, 185, 459–465. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Yang, X.; Zhai, H.; Yang, X. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system. Energy Convers. Manag. 2020, 205, 112391. [Google Scholar] [CrossRef]
- Gaspar, A.; Dieguez, L. The influence of Cr precursors in the ethylene polymerization on Cr/SiO2 catalysts. Appl. Catal. A: Gen. 2002, 227, 241–254. [Google Scholar] [CrossRef]
- Aizaz, U.; Ansari, M.A.; Malaibari, Z.O.; Hussain, I. Frontiers in catalytic ammonia decomposition: A cutting-edge tutorial and review on catalyst innovation trends and techno-economic insights. Chem. Eng. Journal: Green Sustain. 2025, 1, 100001. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, B.; Chen, Z.; Shi, J.; Jing, D.; Lu, Y.; Liu, M. Advancements in thermocatalytic ammonia decomposition for hydrogen production. Innov. Energy 2024, 1, 100056-1–100056-15. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydrogen Energy 2020, 45, 26979–26988. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Alinajafi, H.A.; Ensafi, A.A.; Rezaei, B. Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential. Int. J. Hydrogen Energy 2018, 43, 23262–23274. [Google Scholar] [CrossRef]
- Chiesa, P.; Lozza, G.; Mazzocchi, L. Using Hydrogen as Gas Turbine Fuel. J. Eng. Gas Turbines Power 2005, 127, 73–80. [Google Scholar] [CrossRef]
- Ahmad, A.H.; Tsujimura, T.; Shimura, M.; Fan, Y.; Ito, H.; Iki, N.; Kurata, O.; Jo, H.; Aziz, M. Thermodynamic and preliminary techno-economic analysis of NH3 utilization in combined cycle power plant: Comparison of direct liquid, vaporized, and cracked NH3-Based combustion methods. Int. J. Hydrogen Energy 2025, 173, 151337. [Google Scholar] [CrossRef]
- Mojaver, P.; Abbasalizadeh, M.; Khalilarya, S.; Chitsaz, A. Co-generation of electricity and heating using a SOFC-ScCO2 Brayton cycle-ORC integrated plant: Investigation and multi-objective optimization. Int. J. Hydrogen Energy 2020, 45, 27713–27729. [Google Scholar] [CrossRef]
- Danial, M.; Azis, F.A.; Abas, P.E. Techno-Economic Analysis and Feasibility Studies of Electric Vehicle Charging Station. World Electr. Veh. J. 2021, 12, 264. [Google Scholar] [CrossRef]
- Khaled, S.; Abdalla, A.M.; Abas, P.E.; Taweekun, J.; Reza, S.; Azad, A.K. Life Cycle Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Bangladesh: A Comparative Analysis. World Electr. Veh. J. 2024, 15, 183. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis – a review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Omata, K.; Sato, K.; Nagaoka, K.; Yukawa, H.; Matsumoto, Y.; Nambu, T. Direct high-purity hydrogen production from ammonia by using a membrane reactor combining V-10mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst. Int. J. Hydrogen Energy 2022, 47, 8372–8381. [Google Scholar] [CrossRef]
- Usman, M.; Ali, A.; Yamani, Z.H.; Shaikh, M.N. Catalytic pathways for efficient ammonia-to-hydrogen conversion towards a sustainable energy future. Sustain. Energy Fuels 2024, 8, 5329–5351. [Google Scholar] [CrossRef]
- AlZohbi, G. Ammonia from Hydrogen: A Viable Pathway to Sustainable Transportation? Sustainability 2025, 17, 8172. [Google Scholar] [CrossRef]
- Maccarrone, D.; Italiano, C.; Giorgianni, G.; Centi, G.; Perathoner, S.; Vita, A.; Abate, S. A Comprehensive Review on Hydrogen Production via Catalytic Ammonia Decomposition. Catalysts 2025, 15, 811. [Google Scholar] [CrossRef]
- Arsad, S.; Ker, P.J.; Hannan, M.; Tang, S.G.; N.R., S; Chau, C.; Mahlia, T. Patent landscape review of hydrogen production methods: Assessing technological updates and innovations. Int. J. Hydrogen Energy 2023, 50, 447–472. [Google Scholar] [CrossRef]
- Xi, S.; Wu, W.; Yao, W.; Han, R.; He, S.; Wang, W.; Zhang, T.; Yu, L. Hydrogen Production from Ammonia Decomposition: A Mini-Review of Metal Oxide-Based Catalysts. Molecules 2024, 29, 3817. [Google Scholar] [CrossRef]
- Khan, W.U.; Alasiri, H.S.; A Ali, S.; Hossain, M.M. Recent Advances in Bimetallic Catalysts for Hydrogen Production from Ammonia. Chem. Rec. 2022, 22, e202200030. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.; Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B: Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Le, T.A.; Do, Q.C.; Kim, Y.; Kim, T.-W.; Chae, H.-J. A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean J. Chem. Eng. 2021, 38, 1087–1103. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, B.; Chen, Z.; Shi, J.; Jing, D.; Lu, Y.; Liu, M. Advancements in thermocatalytic ammonia decomposition for hydrogen production. Innov. Energy 2024, 1, 100056-1–100056-15. [Google Scholar] [CrossRef]
- Su, Z.; Guan, J.; Liu, Y.; Shi, D.; Wu, Q.; Chen, K.; Zhang, Y.; Li, H. Research progress of ruthenium-based catalysts for hydrogen production from ammonia decomposition. Int. J. Hydrogen Energy 2024, 51, 1019–1043. [Google Scholar] [CrossRef]
- Zhu, N.; Yang, F.; Hong, Y.; Liang, J. Hydrogen production from ammonia decomposition: Advances in Ru- and Ni-based catalysts. Int. J. Hydrogen Energy 2025, 98, 1243–1261. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Gao, Y.; Li, Q.; Deng, Z.; Miao, B.; He, H.; Poh, C.K.; Zhang, L.; Chan, S.H. Recent advances in supported metal catalysts for CO2 methanation: mechanisms, materials design, and the promise of perovskite-based supports. Energy Convers. Manag. X 2025, 27, 101066. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Bernhard, D.; Kadyk, T.; Krewer, U.; Kirsch, S. How platinum oxide affects the degradation analysis of PEM fuel cell cathodes. Int. J. Hydrogen Energy 2021, 46, 13791–13805. [Google Scholar] [CrossRef]
- Franz, S.; Falletta, E.; Arab, H.; Murgolo, S.; Bestetti, M.; Mascolo, G. Degradation of Carbamazepine by Photo(electro)catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways. Catalysts 2020, 10, 169. [Google Scholar] [CrossRef]
- Wei, G.; Wu, X.; Meng, J.; Huang, Z.; He, F.; Zhao, W.; Zhao, K.; Zheng, A.; Zhao, Z.; Li, H. Performance evaluation of hematite oxygen carriers in high purity hydrogen generation from cooking oil by chemical looping reaction. Int. J. Hydrogen Energy 2018, 43, 20500–20512. [Google Scholar] [CrossRef]
- Vodlan, K.; Likozar, B.; Huš, M. Modeling of plasma-activated ammonia synthesis. Chem. Eng. J. 2025, 509, 161459. [Google Scholar] [CrossRef]
- Alinajafi, H.A.; Ensafi, A.A.; Rezaei, B. Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential. Int. J. Hydrogen Energy 2018, 43, 23262–23274. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy 2022, 247, 123456. [Google Scholar] [CrossRef]
- Nikolaeva, N.S.; Klyamer, D.D.; Zharkov, S.M.; Tsygankova, A.R.; Sukhikh, A.S.; Morozova, N.B.; Basova, T.V. Heterostructures based on Pd–Au nanoparticles and cobalt phthalocyanine for hydrogen chemiresistive sensors. Int. J. Hydrogen Energy 2021, 46, 19682–19692. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, W.; Yang, S.; Zhou, X.; Ge, C.; Gao, Q.; Fang, Y.; Zhang, S. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting. Int. J. Hydrogen Energy 2020, 45, 17378–17387. [Google Scholar] [CrossRef]
- Yang, T.-F.; Lu, J.-H.; Yan, W.-M.; Ghalambaz, M. Optimization of pulse current on energy storage of zinc-air flow batteries. J. Power Sources 2019, 442, 227253. [Google Scholar] [CrossRef]
- Ishaq, T.; Yousaf, M.; Bhatti, I.A.; Ahmad, M.; Ikram, M.; Khan, M.U.; Qayyum, A. Photo-assisted splitting of water into hydrogen using visible-light activated silver doped g-C3N4 & CNTs hybrids. Int. J. Hydrogen Energy 2020, 45, 31574–31584. [Google Scholar] [CrossRef]
- Gabelica, I.; Ćurković, L.; Mandić, V.; Panžić, I.; Ljubas, D.; Zadro, K. Rapid Microwave-Assisted Synthesis of Fe3O4/SiO2/TiO2 Core-2-Layer-Shell Nanocomposite for Photocatalytic Degradation of Ciprofloxacin. Catalysts 2021, 11, 1136. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Mojaver, P.; Abbasalizadeh, M.; Khalilarya, S.; Chitsaz, A. Co-generation of electricity and heating using a SOFC-ScCO2 Brayton cycle-ORC integrated plant: Investigation and multi-objective optimization. Int. J. Hydrogen Energy 2020, 45, 27713–27729. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Tian, M.; Wen, F. Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015. Energy 2019, 171, 1139–1149. [Google Scholar] [CrossRef]
- Bernhard, D.; Kadyk, T.; Krewer, U.; Kirsch, S. How platinum oxide affects the degradation analysis of PEM fuel cell cathodes. Int. J. Hydrogen Energy 2021, 46, 13791–13805. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Shokoohi, Z.; Behzadifar, Y. Energy use and carbon dioxide emission analysis in sugarcane farms: a survey on Haft-Tappeh Sugarcane Agro-Industrial Company in Iran. J. Clean. Prod. 2014, 83, 212–219. [Google Scholar] [CrossRef]
- Ratnayake, A.M.B.; Yasin, H.M.; Naim, A.G.; Abas, P.E. Buzzing through Data: Advancing Bee Species Identification with Machine Learning. Appl. Syst. Innov. 2024, 7, 62. [Google Scholar] [CrossRef]
- Wang, L.S.; Firdaous, M.H.; Abas, P.E. Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis. Inventions 2025, 10, 67. [Google Scholar] [CrossRef]
- Hossen, A.; Abas, P.E. Machine Learning for Human Activity Recognition: State-of-the-Art Techniques and Emerging Trends. J. Imaging 2025, 11, 91. [Google Scholar] [CrossRef]
- Richard, S.; Tasso, D.; Rajana, M.; Saker, A.; Meynet, N.; Hary, B.; Nardone, S.; Marino, G.; Italiano, C.; Vita, A.; et al. Modelling the feasibility of membrane integration into periodic open cellular structures for ammonia decomposition. Chem. Eng. J. 2025, 521, 166903. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Ikeda, A.; Hasegawa, Y. Optimizing the hydrogen productivity of an ammonia decomposition membrane reactor through offset positioning of the membrane and catalyst. J. Membr. Sci. 2025, 725, 124020. [Google Scholar] [CrossRef]
- Cechetto, V.; Agnolin, S.; Di Felice, L.; Tanaka, A.P.; Tanco, M.L.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H2 Separation in a Membrane Reactor: Experimental Proof of Concept. Catalysts 2023, 13, 920. [Google Scholar] [CrossRef]
- Li, T.; Gu, X.; Wang, Q.; Zhang, K.; Li, W.; Du, H.; Liu, H.; Aili, E.; Ye, Y.; Chen, X. Metal-organic framework ZIF-67 derived Co@CN catalysts for the promising generation of hydrogen from ammonia decomposition. Fuel 2025, 398, 135558. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, A.; Chang, J.; Wang, Y.; Wang, X.; Zhang, J. Cluster-type open-loop pumped storage power stations with hydraulic connections exacerbate water level fluctuations of conventional hydropower stations and alter hydropower flexibility. Energy 2025, 334, 137707. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Huang, W.; Lin, L.; Wang, L.; Wu, Z.; Fang, H.; Wang, D.; Chen, C.; Luo, Y.; et al. Multiscale modeling of a low-temperature NH 3 decomposition reactor for precious metal reduction and temperature control. AIChE J. 2025, 71, e18781. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, B.; Tang, R.; Guo, J.; Li, Z.; Gong, X.; Yang, J.; Yao, J.; Xie, L.; Chen, L.; et al. Efficient low-temperature NH 3 decomposition to H 2 over strain-engineered Ru/ Y 2 O 3 - MgO: Kinetic and mechanistic insights. AIChE J. 2025, e70187. [Google Scholar] [CrossRef]
- Gong, X.-C.; Peng, C.; Li, Z.; Zhang, D.; Wang, B.-H.; Yao, J.-J.; Guo, J.-K.; Chen, G.-H.; Yin, S.-F. Spin-State Engineering of Co-Based Catalysts Enables Efficient Ammonia Decomposition for Hydrogen Production. Energy Fuels 2025, 39, 19904–19911. [Google Scholar] [CrossRef]
- Guan, B.; Chen, J.; Zhuang, Z.; Zhu, L.; Ma, Z.; Hu, X.; Zhu, C.; Zhao, S.; Shu, K.; Dang, H.; et al. Study on the Effect and Mechanism of Ru Precursors and Alkali Metal Modification on Ru/Pr6O11 Catalysts for Ammonia Decomposition. Catal. Lett. 2025, 155, 1–17. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Chen, S.; Zhang, H. Catalytic performance of M@Ni (M = Fe, Ru, Ir) core−shell nanoparticles towards ammonia decomposition for COx-free hydrogen production. J. Nanoparticle Res. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Singh, P.; Li, Q.; Liu, Y.; Che, F. Multiscale Simulation Guided Electric Field-Enhanced Ammonia Catalytic Cracking. ACS Catal. 2025, 15, 7690–7699. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, D.; Italiano, C.; Giorgianni, G.; Centi, G.; Perathoner, S.; Vita, A.; Abate, S. A Comprehensive Review on Hydrogen Production via Catalytic Ammonia Decomposition. Catalysts 2025, 15, 811. [Google Scholar] [CrossRef]
- Wu, J.; Yang, L.; Xiang, C.; Liang, J.; Yang, H.; Li, D.; Sun, Y.; Lv, L.; Zhu, N. Research on Catalysts for Online Ammonia Hydrogen Production in Marine Engines: Performance Evaluation and Reaction Kinetic Modeling. Catalysts 2025, 15, 488. [Google Scholar] [CrossRef]
- Li, Y.-F.; Chen, X.-Y. Analysis and Optimization of Waste Heat Recovery from Ammonia Containers and an Ammonia Decomposition-Based Hydrogen Production and Liquefaction System. Korean J. Chem. Eng. 2025, 42, 3033–3054. [Google Scholar] [CrossRef]
- Song, Y.; Ju, Y.; Son, C.; Bae, D.; Go, Y.J.; Kang, S.B.; Kim, M. First-principles, data-guided screening and catalyst design: Unveiling energetic trade-offs in ammonia decomposition. J. Catal. 2025, 450, 116339. [Google Scholar] [CrossRef]
- Meng, S.; Chen, Y.; Cui, Z.; Gu, Y.; Xiao, H.; Liu, Y.; Yang, S.; Li, J.; Yu, K.; Wang, C.; et al. Plasma-Driven Dual-Membrane System for Intensified Hydrogen Production with Integrated Ammonia Recovery. J. Am. Chem. Soc. 2025, 147, 42949–42963. [Google Scholar] [CrossRef] [PubMed]
- Van Steenweghen, F.; Verschueren, A.; Fedirchyk, I.; Martens, J.A.; Bogaerts, A.; Hollevoet, L. Reversed Plasma Catalysis Process Design for Efficient Ammonia Decomposition. ACS Sustain. Chem. Eng. 2025, 13, 737–743. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, Y.; Ming, P.; Wu, Z.; Chen, H.; Huang, Y.; Li, L. Kinetics-Based analysis of the gliding arc plasma assisted ammonia decomposition process towards vehicle on-board applications. Chem. Eng. J. 2025, 505, 159443. [Google Scholar] [CrossRef]
- Wang, Z.; He, G.; Zhang, H.; Liao, C.; Yang, C.; Zhao, F.; Lei, G.; Zheng, G.; Mao, X.; Zhang, K. Plasma-Promoted Ammonia Decomposition over Supported Ruthenium Catalysts for COx-Free H2 Production. ChemSusChem 2023, 16, e202202370. [Google Scholar] [CrossRef]
- Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts. Chem. Eng. Sci. 2023, 283, 119449. [Google Scholar] [CrossRef]
- Zhao, Z.; He, W.; Guo, B.; Yu, J.; Wang, Z.; Yu, H. A Comprehensive Review of Ammonia Decomposition for Hydrogen Production. Energy Fuels 2025, 39, 13825–13847. [Google Scholar] [CrossRef]
- Maccarrone, D.; Italiano, C.; Giorgianni, G.; Centi, G.; Perathoner, S.; Vita, A.; Abate, S. A Comprehensive Review on Hydrogen Production via Catalytic Ammonia Decomposition. Catalysts 2025, 15, 811. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Chen, R.; Zhang, H.; Zhou, X.; Wang, N.; Huang, S.; Li, S. Energy Flow Analysis and Modeling of Plasma-Enhanced Thermocatalytic Ammonia Reforming for On-Board Hydrogen Production. Energy Fuels 2025, 39, 19042–19053. [Google Scholar] [CrossRef]
- Ratnakar, R.R. Decarbonizing hydrogen supply chain via electrifying endothermic processes. Chem. Eng. Sci. 2024, 299, 120439. [Google Scholar] [CrossRef]
- Yun, S.; Im, J.; Kim, J.; Cho, H.; Lee, J. Enhanced ammonia-cracking process via induction heating for green hydrogen: A comprehensive energy, exergy, economic, and environmental (4E) analysis. Chem. Eng. J. 2024, 491, 151875. [Google Scholar] [CrossRef]
- Lee, J.; Ga, S.; Lim, D.; Lee, S.; Cho, H.; Kim, J. Carbon-free green hydrogen production process with induction heating-based ammonia decomposition reactor. Chem. Eng. J. 2022, 457, 141203. [Google Scholar] [CrossRef]
- Cherif, A.; Zarei, M.; Lee, J.-S.; Yoon, H.-J.; Lee, C.-J. Modeling and multi-objective optimization of electrified ammonia decomposition: Improvement of performance and thermal behavior. Fuel 2023, 358, 130243. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Liu, Y.; Zhang, X.; Liu, Z. Study of thermal effects in ammonia-fueled solid oxide fuel cells. J. Electroanal. Chem. 2023, 953, 118001. [Google Scholar] [CrossRef]
- Yu, Q.; Ao, R.; Wang, B.; Li, H. Performance analysis of a multi-channel membrane reactor for solar thermochemical ammonia decomposition. Appl. Therm. Eng. 2025, 280, 128142. [Google Scholar] [CrossRef]
- Geng, J.; Fan, X.; Dou, L.; Li, Y.; Sun, J.; Mu, M. Study of ammonia decomposition system for hydrogen production driven by medium–low temperature solar energy. Appl. Therm. Eng. 2025, 269, 126172. [Google Scholar] [CrossRef]















| Synthesis Methods | Description |
|---|---|
| Thermo-catalytic/Thermal Catalytic Decomposition | Studies classified under this category simulate ammonia decomposition driven primarily by thermal energy in the presence of heterogeneous catalysts. These works commonly assumes steady or quasi-steady temperature fields aimed to capture temperature-dependent reaction rates, catalyst activity, and reactor-level performance under high-temperature operating conditions. |
| Plasma-catalytic Decomposition | This category includes modelling studies that explicitly account for plasma-enhanced ammonia decomposition, in which electrical energy is employed to produce reactive species that interact with catalytic surfaces. Models of this type would usually include non-equilibrium effects, plasma–chemical interactions, or effective reaction rate enhancements to represent plasma-induced activation mechanisms. |
| Electrocatalytic Decomposition | Electrocatalytic decomposition studies are characterised by modelling frameworks that represent ammonia conversion driven by applied electrical potentials at electrochemical interfaces. These models typically include electrode kinetics, charge transfer processes, and electrochemical reaction pathways, with ammonia decomposition treated as a voltage-dependent process rather than a purely thermally activated reaction. |
| Photothermal Decomposition | Photothermal decomposition research involves the simulation of ammonia conversion caused by light-mediated heating of catalytic substances. The modelling in this category is concentrated on linking the radiative energy absorption with thermal transport and catalytic reaction kinetics, often representing light intensity as an indirect driver of local temperature elevation at the catalyst surface. |
| *Photocatalytic Decomposition | This type of ammonia decomposition is driven directly by photo-induced charge carriers generated within photoactive materials. Models typically represent surface reaction pathways influenced by photon absorption, charge separation, and recombination dynamics, rather than relying solely on bulk temperature effects. |
| Modelling Methods | Description |
|---|---|
| Reactor-scale numerical & CFD modelling | This category includes studies that utilizes numerical or CFD-based techniques to resolve spatially distributed flow, heat transfer, and species transfer in ammonia decomposition reactors. Transport phenomena is usually coupled with reaction kinetics to capture non-uniform temperature fields, concentration gradients, and reactor-scale performance metrics. |
| Kinetic/thermochemical mechanism modelling | Research in this category is aimed at modelling ammonia decomposition through reaction-rate expressions or mechanistic formulations. These models range from global kinetic representations to detailed reaction mechanisms and are usually applied to the analysis of temperature dependence, catalyst behaviour, and reaction pathways under controlled conditions. |
| Thermodynamic, energy & exergy-based modelling | This category includes modelling studies that analyse ammonia decomposition using equilibrium assumptions, energy balances, and exergy concepts. These models are mainly employed to test theoretical performance limits, energy efficiency, and irreversibility within ammonia cracking systems, as opposed to reaction dynamics. |
| Multi-scale/cross-scale modelling | Multi-scale modelling studies combines information across different length or time scales, such as combining atomistic-level insights with kinetic or reactor-scale models. These designs aim to bridge catalyst-level phenomena with that of macroscopic reactor behaviour, enabling ammonia decomposition phenomena to be represented more comprehensively. |
| Generalized/dimensionless/conceptual modelling | This category includes simplified or abstract modelling techniques used to describe the behaviour of ammonia decomposition using dimensionless groups, analytical formulations, or conceptual frameworks. These models are generally employed to find ruling parameters, scaling relationships, or qualitative trends instead of detailed quantitative predictions. |
| Synthesis Methods | Counts |
|---|---|
| Thermo-catalytic / Thermal Catalytic | 60 |
| Plasma-Catalytic | 8 |
| Electrocatalytic | 1 |
| Photothermal | 1 |
| Photocatalytic | 0 |
| Microwave-Assisted Catalytic Decomposition | 0 |
| Total | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
