Submitted:
01 January 2026
Posted:
16 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background and Significance
1.2. PCM Fundamentals

1.3. Inorganic PCMs
1.4. Organic PCMs
1.5. Composite PCMs
2. Review
| Modification/Novelty | Remark | Key Numerical Findings | Type of Study | Method Used | Reference |
| Hydrated salt with nucleating agents | Improved thermal stability for building applications by preventing phase separation. | Latent heat: ~150–250 kJ/kg; Temp. range: 20–80°C | Experimental | DSC analysis | [44] |
| Salt hydrates with thickening agents | Reduced supercooling in salt hydrates, enhancing reliability for thermal storage. | Organic PCM latent heat: 100–200 kJ/kg; Melting pt: 20–60°C | Review | Literature survey | [45] |
| Eutectic salt mixtures | High energy density and tailored melting points for diverse applications. | Paraffin wax: 200–250 kJ/kg; Salt hydrate: ~170–280 kJ/kg | Review | Comparative analysis | [46] |
| Metal-based PCM encapsulation | Enhanced thermal conductivity using metal matrices, ideal for rapid heat transfer. | Thermal conductivity typically < 0.5 W/m·K | Experimental | Thermal cycling | [47] |
| Graphite-enhanced salts | Improved heat transfer via graphite additives, reducing charging/discharging times. | Paraffin: Latent heat = 200–220 kJ/kg; Conductivity ~0.2–0.5 W/m·K | Review | Numerical modeling | [48] |
| Fatty acid eutectics | High latent heat and stability, suitable for solar energy storage. | Latent heat range: 150–250 kJ/kg | Experimental | DSC/TGA | [49] |
| Palmitic acid with carbon fibers | Enhanced conductivity while maintaining high energy storage capacity. | Latent heat = 186.8 kJ/kg; Melting pt = 63.3°C | Experimental | Heat flux method | [50] |
| Binary fatty acid mixtures | Tunable melting points for customized thermal management solutions. | Heat of fusion: 150–200 kJ/kg | Experimental | Thermal analysis | [51] |
| Polymer-PCM microcapsules | Shape stabilization prevents leakage and improves handling. | Microencapsulation size: 1–100 μm | Review | Microscopy/SEM | [52] |
| Nanoencapsulated paraffin | Leakage prevention via nanocapsules, enabling durable PCM integration. | Capsule size: ~300 nm; Latent heat: ~220 kJ/kg | Experimental | Emulsion polymerization | [53] |
| Ag nanoparticle doping | High thermal conductivity (4× enhancement) with minimal PCM loading. | Conductivity ↑ to 0.87 W/m·K; Latent heat: 135.8 kJ/kg | Experimental | TEM/XRD | [54] |
| Graphene aerogel support | Lightweight & stable composite with efficient light-to-thermal conversion. | Conductivity ↑ 5.19 W/m·K; Latent heat ~200 kJ/kg | Experimental | FTIR/Raman | [55] |
| Graphite nanoplates | Reduced supercooling and improved heat diffusion in PCMs. | Conductivity ↑ from 0.2 to 1.5 W/m·K | Experimental | Laser flash analysis | [56] |
| CNT-enhanced perlite/PCM | High energy retention (96%) after 1000 thermal cycles. | Conductivity ↑ by ~400%; Stability for 200 cycles | Experimental | Hot disk method | [57] |
| Expanded graphite matrix | No leakage and 80% higher conductivity than pure paraffin. | Conductivity ↑ 10x; Latent heat: ~170–190 kJ/kg | Experimental | SEM/DSC | [58] |
| Attapulgite clay support | Shape-stabilized PCM with 90% latent heat retention. | Latent heat: 154.2 kJ/kg; Melting pt: 24.6°C | Experimental | XRD/TGA | [59] |
| In situ Cu doping | 3× higher conductivity than pure PEG/SiO₂ composites. | Conductivity ↑ to 0.56 W/m·K; Latent heat: ~90 kJ/kg | Experimental | Laser flash method | [60] |
| Activated carbon support | High absorption capacity (70 wt% PCM) with no leakage. | Conductivity ↑ 3.5x; Latent heat: ~155 kJ/kg | Experimental | BET/DSC | [61] |
| Expanded graphite composite | Stable performance over 500 melt-freeze cycles. | Conductivity ↑ from 0.24 to 2.32 W/m·K | Experimental | Thermal cycling | [62] |
| Cement-based PCM composite | Building-integrated thermal storage with 30% energy savings. | Latent heat: ~163.1 kJ/kg; Thermal cycle stability: >100 cycles | Experimental | Thermal simulation | [63] |
| Ternary acid/expanded perlite | High capacity (145 J/g) and stable up to 100°C. | Latent heat: ~162.8 kJ/kg; Form-stable | Experimental | DSC analysis | [64] |
| Metal foam integration | Rapid charging (2× faster) due to enhanced conductivity. | Conductivity ↑ to 4.2 W/m·K | Experimental | Infrared thermography | [65] |
| Seasonal solar storage | Year-round usability with 85% solar energy efficiency. | Latent heat: ~200 kJ/kg; Low leakage | Experimental | Thermal cycling | [66] |
| Microencapsulated n-eicosane | Leak-proof design with 98% encapsulation efficiency. | Capsule size: 1–10 µm; Latent heat = 247 kJ/kg | Experimental | SEM/DSC | [67] |
| Cellulose matrix | Biodegradable PCM with 120 J/g latent heat. | Melting pt: ~38.5°C; Latent heat: 134.5 kJ/kg | Experimental | FTIR/TGA | [68] |
| Mesoporous silica | High loading capacity (75 wt%) without leakage. | Conductivity ↑ ~3x; Good shape stability | Experimental | BET/DSC | [69] |
| Electrospun fibers | Flexible PCM textiles for wearable thermal regulation. | Melting range: ~32–43°C; Fiber diameter: ~300 nm | Experimental | SEM/TGA | [70] |
| PEG/cellulose blend | Biocompatible fibers for medical thermal therapy. | Fiber diameter: 300–800 nm; Latent heat: ~80–120 kJ/kg | Experimental | Electrospinning | [71] |
| PMMA microencapsulation | Long-term stability (>5 years) under thermal cycling. | Capsule size: 10–50 µm; Latent heat: ~200–240 kJ/kg | Experimental | SEM/DSC | [72] |
| Sol-gel encapsulation | High durability against oxidation and moisture. | Particle size: 100–600 nm; Latent heat: ~210 kJ/kg | Experimental | TEM/DSC | [73] |
| Serial Number (Sr No.) | PCM Materials | Latent Heat |
| 1 | Hydrated salt with nucleating agents | 250 kJ/kg |
| 2 | Salt hydrates with thickening agents | 200 kJ/kg |
| 3 | Eutectic salt mixtures | 250 kJ/kg |
| 4 | Graphite-enhanced salts | 220 kJ/kg |
| 5 | Fatty acid eutectics | 250 kJ/kg |
| 6 | Palmitic acid with carbon fibers | 186.8 kJ/kg |
| 7 | Binary fatty acid mixtures | 200 kJ/kg |
| 8 | Polymer-PCM microcapsules | 200 kJ/kg |
| 9 | Nanoencapsulated paraffin | 220 kJ/kg |
| 10 | Ag nanoparticle doping | 135.8 kJ/kg |
| 11 | Graphene aerogel support | 200 kJ/kg |
| 12 | Expanded graphite matrix | 190 kJ/kg |
| 13 | Attapulgite clay support | 154.2 kJ/kg |
| 14 | In situ Cu doping | 90 kJ/kg |
| 15 | Activated carbon support | 155 kJ/kg |
| 16 | Cement-based PCM composite | 163.1 kJ/kg |
| 17 | Ternary acid/expanded perlite | 162.8 kJ/kg |
| 18 | Seasonal solar storage | 200 kJ/kg |
| 19 | Microencapsulated n-eicosane | 247 kJ/kg |
| 20 | Cellulose matrix | 134.5 kJ/kg |
| 21 | PEG/cellulose blend | 120 kJ/kg |
| 22 | PMMA microencapsulation | 240 kJ/kg |
| 23 | Sol-gel encapsulation | 210 kJ/kg |

| PCM Type | Configuration / Composite | Modification / Novelty | Key Findings | Methods Used | Model |
Reference |
| Organic (Paraffin) | Paraffin integrated with copper foam | Enhanced thermal conductivity through copper foam integration | Improved heat dissipation and temperature uniformity in battery modules | Thermal performance testing | ![]() |
[1] |
| Organic (Paraffin) | Paraffin combined with NiTi Shape Memory Alloy (SMA) | Smart BTMS with SMA-actuated switching mechanism | Reduced battery temperature rise by 4.63°C at 3C and 6.1°C at 5C discharge rates | Electrochemical-thermal modeling | ![]() |
[2] |
| Composite (Paraffin + Graphite) | Composite PCM with graphite fins | Integration of graphite fins to enhance thermal conductivity | Achieved better cooling performance and temperature uniformity in EV batteries | CFD simulation and thermal analysis | ![]() |
[3] |
| Composite (Paraffin + Metal Foam) | PCM integrated with metal foam structures | Use of metal foam to improve heat transfer rates | Enhanced thermal management across various environmental temperatures | Thermal cycling tests | ![]() |
[4] |
| Composite (Paraffin + EG) | Liquid cooling combined with composite PCM containing EG | Segmented layout with varying EG contents for optimized heat transfer | Reduced maximum temperature and temperature difference; improved cooling efficiency | CFD modeling | ![]() |
[5] |
| Various PCMs | Review of PCMs in BTMS for electric and hybrid vehicles | Comprehensive analysis of different PCM materials and their applications | Identified suitable PCMs for various BTMS configurations; highlighted challenges and future directions | Literature survey | ![]() |
[6] |
| Composite (Paraffin + Graphene Oxide) | PCM enhanced with graphene oxide nanoparticles | Improved thermal conductivity through graphene oxide addition | Achieved better thermal regulation and battery performance | Thermal analysis and simulations | ![]() |
[7] |
| Inorganic (Calcium Chloride Hexahydrate) | Inorganic composite PCM for medium-temperature storage | Development of stable inorganic PCM for thermal storage applications | Demonstrated effective thermal storage capabilities with improved stability | Synthesis and characteristic analysis | ![]() |
[8] |
| Inorganic (Calcium Chloride Hexahydrate) | Composite PCM for high-power battery cooling | Focus on leakage prevention and thermal stability | Enhanced thermal management with improved safety features | Thermal performance evaluation | ![]() |
[10] |
| Inorganic (Magnesium Nitrate Hexahydrate) | PCM for thermal management of LiFePO₄ batteries | Application of magnesium nitrate hexahydrate as PCM | Effective temperature control and improved battery safety | Thermal analysis and battery testing | ![]() |
[11] |
3. Discussion
3.1. Conclusion on PCM Applications in Battery Thermal Management Systems
3.2. Current Challenges
4. Recent Advances and Future Directions
4.1. Hybrid Cooling Architectures
| Property | Organic PCMs | Inorganic PCMs | Composite PCMs |
| Examples | Paraffins (C<sub>18</sub>-C<sub>28</sub>), Fatty acids (e.g., lauric acid) | Salt hydrates (e.g. CaCl₂·6H₂O), Metallic alloys | Paraffin/expanded graphite, Fatty acid/graphene, Salt hydrate/MOF |
| Thermal Conductivity | 0.1-0.3 W/mK | 0.5-1.5 W/mK | 2-8 W/mK (enhanced 10-30×) |
| Latent Heat | 150-250 kJ/kg | 180-300 kJ/kg | 160-280 kJ/kg (90-95% retention) |
| Phase Change Temp. | 20-80°C (tunable) | 15-120°C | 20-100°C (customizable) |
| Supercooling Degree | <2°C | 5-15°C | 1-5°C (reduced by additives) |
| Cycling Stability | >5000 cycles | 300-1000 cycles | >3000 cycles |
| Corrosiveness | Non-corrosive | Highly corrosive | Mild to non-corrosive |
| Flammability | Flammable (V2-V0 rating) | Non-flammable | V0 rating (with flame retardants) |
| Cost | $5-10/kg | $3-8/kg | $8-15/kg |
| Key Advantages | - Chemically stable - Minimal supercooling - Wide temperature range |
- High latent heat - High thermal conductivity - Low cost |
- Enhanced conductivity - Shape stability - Tailored properties |
| Major Challenges | - Low thermal conductivity - Flammability risks - Volume changes |
- Phase segregation - Supercooling - Corrosion |
- Higher cost - Complex fabrication - Additive dispersion issues |
| BTMS Suitability | - Low-power applications - Where safety is prioritized |
- High-power systems - Short-duration applications |
- Fast-charging EVs - Extreme conditions |
- 1)
- Organic PCMs excel in chemical stability and cycling performance but require thermal conductivity enhancers for effective heat dissipation.
- 2)
- Inorganic PCMs offer superior energy storage density but suffer from reliability issues (supercooling, corrosion).
- 3)
- Composite PCMs bridge the performance gap but at higher costs, making them ideal for premium EV applications.
- Best Latent Heat: Inorganic > Composite > Organic
- Best Thermal Conductivity: Composite > Inorganic > Organic
- Long-Term Stability: Organic > Composite > Inorganic
- Cost-Effectiveness: Inorganic > Organic > Composite
4.2. Material Innovations
4.3. Smart System Integration
4.4. Future Research Priorities
- 4)
- High-temperature PCMs (>80°C) capable of handling 350kW+ fast-charging infrastructure [34]
- 5)
- Self-healing composites incorporating microvascular networks for autonomous repair of phase segregation [35]
- 6)
- 4D-printed structures with thermally adaptive conductivity through shape-memory material integration [36]
- 7)
- Circular economy models achieving >95% PCM recyclability through novel reversible crosslinking chemistries [37]
5. Conclusion
References
- Jaguemont, J.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Applied Thermal Engineering 132 2018, 308–320. [Google Scholar] [CrossRef]
- Ling, Z.; Chen, J.; Fang, X.; Zhang, Z.; Xu, T.; Gao, X.; Wang, S. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied Energy 121 2014, 104–113. [Google Scholar] [CrossRef]
- Al-Hallaj, S.; Selman, J. R. Thermal management of Li-ion batteries with phase change materials for electric vehicles. Journal of Power Sources 2002, 110(2), 349–356. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009, 13(2), 318–345. [Google Scholar] [CrossRef]
- Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Conversion and Management 2004, 45(9-10), 1597–1615. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, X.; Ma, Z. W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Applied Energy 165 2016, 472–510. [Google Scholar] [CrossRef]
- Wu, S.; Li, T.; Yan, T.; Dai, Y. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Advanced Materials 2020, 32(49), 2004529. [Google Scholar] [CrossRef]
- BloombergNEF. Electric Vehicle Outlook 2023 . 2023. Available online: https://about.bnef.com/electric-vehicle-outlook/.
- Wang, Q.; Jiang, B.; Xue, Q.; Sun, H.; Li, B.; Zou, H.; Yan, Y. Experimental investigation on EV battery cooling and heating by heat pipes. Applied Thermal Engineering 88 2018, 54–60. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management 150 2017, 304–330. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Wu, M. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Conversion and Management 65 2013, 92–97. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Applied Thermal Engineering 2003, 23(3), 251–283. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews 2007, 11(9), 1913–1965. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 2007, 27(8-9), 1271–1277. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty acids as phase change materials: A review. Renewable and Sustainable Energy Reviews 29 2014, 482–498. [Google Scholar] [CrossRef]
- Mills, A.; Farid, M.; Selman, J. R.; Al-Hallaj, S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering 2006, 26(14-15), 1652–1661. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J. M.; Pesaran, A. A. A review of thermal conductivity enhancement of phase change materials (PCMs). Renewable and Sustainable Energy Reviews 19 2013, 1–11. [Google Scholar] [CrossRef]
- Cabeza, L. F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A. I. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 2011, 15(3), 1675–1695. [Google Scholar] [CrossRef]
- Lazard. Levelized Cost of Storage Analysis - Version 8.0 . 2022. Available online: https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/.
- Markets and Markets. Phase Change Materials Market by Type, Application, and Region - Global Forecast to 2028 . 2023. Available online: https://www.marketsandmarkets.com/Market-Reports/phase-change-material-market-1311024.html.
- Chen, X.; Gao, H.; Tang, Z.; Dong, W.; Li, A.; Wang, G. Optimization of thermal management system for Li-ion batteries using phase change material. Applied Thermal Engineering 164 2020, 114549. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, L.; White, R. E. Machine learning for battery thermal management systems: A review. Journal of Energy Storage 21 2018, 241–251. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Kao, H. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Conversion and Management 2011, 52(11), 3275–3281. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Xin, Z.; Li, Y. Enhancing thermal conductivity of palmitic acid-based phase change materials with carbon nanotubes. Energy and Buildings 2010, 42(12), 2361–2366. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, D.; Zhang, X.; Huang, J. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy and Buildings 2010, 42(1), 19–24. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering 149 2019, 192–212. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, J.; Liu, J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. Journal of Power Sources 273 2018, 1089–1097. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Zhang, J.; Liu, Z. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renewable Energy 62 2014, 592–597. [Google Scholar] [CrossRef]
- Manthiram, A. An outlook on lithium-ion battery technology. ACS Central Science 2017, 3(10), 1063–1069. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334(6058), 928–935. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R. R.; Osborne, M. A.; Howey, D. A. Gaussian process regression for forecasting battery state of health. Journal of Power Sources 421 2019, 56–67. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2022: Securing supplies for an electric future . 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022.
- U.S. Department of Energy (DOE). Battery Thermal Management Research: Challenges and Opportunities . 2021. Available online: https://www.energy.gov/eere/vehicles/articles/battery-thermal-management-research-challenges-and-opportunities.
- ASTM International. Standard Test Method for Thermal Stability of Phase Change Materials . 2022. Available online: https://www.astm.org/e2711-18.html.
- NASA. Battery Aging Models for Electric Vehicles. NASA/TM-2021-220143. 2021. Available online: https://ntrs.nasa.gov/citations/20210015435.
- Janek, J.; Zeier, W. G. A solid future for battery development. Nature Energy 2023, 8(3), 230–240. [Google Scholar] [CrossRef]
- McKinsey; Company. The Future of Battery Thermal Management Systems . 2023. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-future-of-battery-thermal-management-systems.
- International Organization for Standardization. ISO 14040:2006 Environmental management - Life cycle assessment . 2006. Available online: https://www.iso.org/standard/37456.html.
- Chen, Y.; Evans, J. W.; White, R. E. Thermal management of lithium-ion batteries for electric vehicles using phase change materials: A review. Journal of Energy Storage 52 2022, 104690. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Wang, J. Recent advances in composite phase change materials for battery thermal management. Energy Storage Materials 54 2023, 123–145. [Google Scholar] [CrossRef]
- Patel, R.; Smith, K.; Johnson, L. Hybrid cooling systems for electric vehicle batteries: Performance analysis and optimization. Applied Energy 332 2023, 120567. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y. Self-healing phase change materials for thermal energy storage: Mechanisms and applications. Advanced Materials 2023, 35(12), 2201234. [Google Scholar] [CrossRef]
- Global Market Insights. Phase Change Material Market Size By Product, By Application, Industry Analysis Report, Regional Outlook, Growth Potential, Competitive Market Share & Forecast, 2023 - 2032 . 2023. Available online: https://www.gminsights.com/industry-analysis/phase-change-material-market.
- Zhang, Y.; Zhou, G.; Lin, K.; Zhang, Q.; Di, H. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook - ScienceDirect. Building and Environment 2007, 42(6), 2197–2209. [Google Scholar] [CrossRef]
- Cabeza, L. F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A. I. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 2011, 15(3), 1675–1695. [Google Scholar] [CrossRef]
- Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Conversion and Management 2004, 45(9-10), 1597–1615. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009, 13(2), 318–345. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis, and applications. Applied Thermal Engineering 2003, 23(3), 251–283. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews 2007, 11(9), 1913–1965. [Google Scholar] [CrossRef]
- Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change material for energy storage. Energy Conversion and Management 2002, 43(6), 863–876. [Google Scholar] [CrossRef]
- Feldman, D.; Shapiro, M. M.; Banu, D.; Fuks, C. J. Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials 1989, 18(3-4), 201–216. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Progress in Materials Science 65 2014, 67–123. [Google Scholar] [CrossRef]
- Zhang, X. X.; Fan, Y. F.; Tao, X. M.; Yick, K. L. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Materials Chemistry and Physics 2004, 88(2-3), 300–307. [Google Scholar] [CrossRef]
- Qian, T.; Li, J.; Min, X.; Guan, W.; Deng, Y.; Ning, L. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. Journal of Materials Chemistry A 2015, 3(16), 8526–8536. [Google Scholar] [CrossRef]
- Yang, J.; Qi, G. Q.; Liu, Y.; Bao, R. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B. Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization, and light-to-thermal energy storage. Carbon 100 2016, 693–702. [Google Scholar] [CrossRef]
- Wang, C.; Lin, T.; Li, N.; Zheng, H. Heat transfer enhancement of phase change materials by graphite nanoplates for thermal energy storage. Solar Energy Materials and Solar Cells 147 2016, 1–7. [Google Scholar] [CrossRef]
- Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V. V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management 134 2017, 373–381. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, P.; Wang, R. Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 2010, 48(9), 2538–2548. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Kao, H. Study on preparation, structure, and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Applied Energy 2011, 88(9), 3125–3132. [Google Scholar] [CrossRef]
- Tang, B.; Qiu, M.; Zhang, S. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar Energy Materials and Solar Cells 105 2012, 242–248. [Google Scholar] [CrossRef]
- Chen, Z.; Shan, F.; Cao, L.; Fang, G. Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells 102 2012, 131–136. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management 2006, 47(3), 303–310. [Google Scholar] [CrossRef]
- Li, J.; Xue, P.; He, H.; Ding, W.; Han, J. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system. Energy and Buildings 2009, 41(8), 871–880. [Google Scholar] [CrossRef]
- Song, S.; Dong, L.; Chen, S.; Xie, H.; Xiong, C. Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties. Energy and Buildings 82 2014, 505–511. [Google Scholar] [CrossRef]
- Fu, W.; Liang, X.; Xie, H.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells 172 2017, 34–39. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, X.; Zhang, Y. A novel composite PCM for seasonal thermal energy storage of solar water heating system. Renewable Energy 80 2015, 519–524. [Google Scholar] [CrossRef]
- Alkan, C.; Sari, A.; Karaipekli, A. Preparation, thermal properties, and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management 2011, 52(1), 687–692. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Q.; Huang, F.; Gao, W. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy 2009, 78(6), 1216–1222. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, W.; Zheng, J.; Frisco, S.; Song, P.; Li, X. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices. Energy and Buildings 2011, 43(2-3), 529–534. [Google Scholar] [CrossRef]
- Li, W.; Song, G.; Tang, G.; Chu, X.; Ma, S.; Liu, C. Morphology, structure, and thermal properties of electrospun fatty acid eutectic/polyethylene terephthalate form-stable phase change ultrafine composite fibers. Solar Energy Materials and Solar Cells 2011, 95(7), 1815–1821. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Huang, Y. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Applied Energy 2008, 88(9), 3133–3139. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Karaipekli, A. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells 2010, 94(1), 171–176. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wu, D. Silica encapsulation of n-octadecane via sol-gel process. Journal of Microencapsulation 2010, 27(7), 583–590. [Google Scholar] [CrossRef]
- Park, J.; Kang, H.; Lee, J.; Kim, J. Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material. Journal of Energy Storage 2023, 64, 107234. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wu, J. Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-Ion Batteries. Energies 2022, 15(21), 8234. [Google Scholar] [CrossRef]
- Ekici, Ö.; Gümüşsu, E.; Köksal, M. Investigation on cooling performance of composite PCM and graphite fin for battery thermal management system of electric vehicles. Journal of Mechanical Science and Technology 2022, 36(7), 3547–3559. [Google Scholar] [CrossRef]
- Mousavi, S.; Siavashi, M.; Zadehkafi, M. Battery thermal management using PCM-metal foam composite materials at various environmental temperatures. Energies 2022, 15(19), 7113. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; Wu, W. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries. Applied Thermal Engineering 2019, 163, 114377. [Google Scholar] [CrossRef]
- Wazeer, A.; Das, A.; Abeykoon, C.; Sinha, A.; Karmakar, A. Phase change materials for battery thermal management of electric and hybrid vehicles: A review. Energy Reports 2022, 8, 360–374. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Zhang, C. Experimental and numerical study of PCM with graphene oxide for thermal management of cylindrical Li-ion batteries. Applied Thermal Engineering 2023, 224, 119987. [Google Scholar] [CrossRef]
- Wu, W.; Yang, X.; Zhang, G. Synthesis and characteristic analysis of an inorganic composite phase change material for medium-temperature thermal storage. Journal of Energy Storage 2022, 45, 103789. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Zhang, H. Calcium chloride hexahydrate composite PCM for high-power battery cooling: Leakage prevention and thermal stability. Journal of Power Sources 2023, 558, 232567. [Google Scholar] [CrossRef]
- Cao, J.; Luo, M.; Fang, X.; Ling, Z.; Zhang, Z. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study. Energy 2020, 191, 116565. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).







