Submitted:
15 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Animal Clinical Data
3.2. Basic Data Statistics
3.3. Taxonomic Identification
3.4. Antibiotic Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABC: ATP-binding cassette AMR: Antimicrobial resistance ARG: Antimicrobial resistance gene BCS: Body condition score CARD: Comprehensive Antibiotic Resistance Database CIA: Critically Important Antimicrobial DNA: Deoxyribonucleic acid FASTQ: Standard text-based format for sequencing reads and quality scores GC: Guanine–cytosine GPS: Global Positioning System HPCIA: Highest Priority Critically Important Antimicrobial MATE: Multidrug and toxic compound extrusion MFS: Major facilitator superfamily NCBI: National Center for Biotechnology Information NGS: Next-generation sequencing RND: Resistance–nodulation–cell division RNA: Ribonucleic acid SMR: Small multidrug resistance WHO: World Health Organization WRC: Wildlife Rehabilitation Centre |
References
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; et al. Recovery of Large Carnivores in Europe’s Human-Dominated Landscapes. Science 2014, 346, 1517–1519.
- Cimatti, M.; Ranc, N.; Benítez-López, A.; et al. Large Carnivore Expansion in Europe Is Associated with Human Population Density and Land Cover Changes. Divers. Distrib. 2021, 27, 602–617.
- Dressel, S.; Sandström, C.; Ericsson, G. A Meta-Analysis of European Attitudes Toward Bears and Wolves. Conserv. Biol. 2015, 29, 565–574.
- Milanesi, P.; Puopolo, F.; Zellweger, F. Landscape Features, Human Disturbance or Prey Availability? What Shapes the Distribution of Large Carnivores in Europe? Land 2022, 11, 1807.
- Bartoń, K.A.; Zwijacz-Kozica, T.; Zięba, F.; Sergiel, A.; Selva, N. Bears without Borders: Long-Distance Movement in Human-Dominated Landscapes. Glob. Ecol. Conserv. 2019, 17, e00541.
- Martínez-Abraín, A.; Jiménez, J.; Jiménez, I.; et al. Ecological Consequences of Human Depopulation of Rural Areas on Wildlife: A Unifying Perspective. Biol. Conserv. 2020, 252, 108860.
- Fernández-Gil, A.; da Rocha, C.; Ferreira Pinto, S.M.; Di Silvestre, I. Large Carnivore Management Plans in EU Member States; 2018.
- Blanco, J.C.; Sundseth, K. The Situation of the Wolf (Canis lupus) in the European Union – An In-Depth Analysis; European Commission: Brussels, Belgium, 2023.
- Zanni, M.; Brogi, R.; Merli, E.; Apollonio, M. The Wolf and the City: Insights on Conservation in the Anthropocene. Anim. Conserv. 2023, doi:10.1111/acv.12858.
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and Disease Emergence: Dynamics at the Wildlife–Livestock–Human Interface. Trends Ecol. Evol. 2017, 32, 55–67.
- Long, R.B.; Krumlauf, K.; Young, A.M. Characterizing Trends in Human–Wildlife Conflicts in the American Midwest Using Wildlife Rehabilitation Records. PLoS ONE 2020, 15, e0238805.
- Molony, S.; Baker, P.; Garland, L.; Cuthill, I.; Harris, S. Factors That Can Be Used to Predict Release Rates for Wildlife Casualties. Anim. Welf. 2007, 16, 361–367.
- Vezyrakis, A.; Bontzorlos, V.; Rallis, G.; Ganoti, M. Two Decades of Wildlife Rehabilitation in Greece: Major Threats, Admission Trends and Treatment Outcomes from a Prominent Rehabilitation Centre. J. Nat. Conserv. 2023, 73, 126372.
- Malmberg, J.L.; White, L.A.; VandeWoude, S. Bioaccumulation of Pathogen Exposure in Top Predators. Trends Ecol. Evol. 2021, 36, 411–420.
- Ståhlberg, S.; Apollonio, M. Scavenger Activity and Anti-Predator Behaviour in an Apennine Wolf Area. Sustainability 2023, 15, 11056.
- Johnson, M.R.; Boyd, D.K.; Pletscher, D.H. Serologic Investigations of Canine Parvovirus and Canine Distemper in Relation to Wolf (Canis lupus) Pup Mortalities. J. Wildl. Dis. 1994, 30, 270–273.
- Molnar, B.; Duchamp, C.; Mostl, K.; Diehl, P.A.; Betschart, B. Comparative Survey of Canine Parvovirus, Canine Distemper Virus and Canine Enteric Coronavirus Infection in Free-Ranging Wolves of Central Italy and South-Eastern France. Eur. J. Wildl. Res. 2014, 60, 613–624.
- Di Francesco, C.E.; Smoglica, C.; Paoletti, B.; et al. Detection of Selected Pathogens in Apennine Wolf (Canis lupus italicus) by a Non-Invasive GPS-Based Telemetry Sampling of Two Packs from Majella National Park, Italy. Eur. J. Wildl. Res. 2019, 65, 84.
- Simões, R.; Ferreira, C.; Gonçalves, J.; et al. Occurrence of Virulence Genes in Multidrug-Resistant Escherichia coli Isolates from Iberian Wolves (Canis lupus signatus) in Portugal. Eur. J. Wildl. Res. 2012, 58, 677–684.
- Gonçalves, A.; Igrejas, G.; Radhouani, H.; et al. Antimicrobial Resistance in Faecal Enterococci and Escherichia coli Isolates Recovered from Iberian Wolf. Lett. Appl. Microbiol. 2013, 56, 268–274.
- Garcês, A.; Pires, I. European Wild Carnivores and Antibiotic-Resistant Bacteria: A Review. Antibiotics 2023, 12, 1725.
- Smoglica, C.; Angelucci, S.; Di Tana, F.; et al. Antibiotic Resistance in the Apennine Wolf (Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics 2023, 12, 950.
- Di Francesco, A.; Salvatore, D.; Ranucci, A.; Gobbi, M.; Morandi, B. Antimicrobial Resistance in Wildlife: Detection of Antimicrobial Resistance Genes in Apennine Wolves from Central Italy. Vet. Res. Commun. 2024, 48, 1941–1947.
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; et al. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2020, 11, 100198.
- Marcacci, M.; Ancora, M.; Mangone, I.; et al. Whole Genome Sequence Analysis of the Arctic-Lineage Strain Responsible for Distemper in Italian Wolves and Dogs through a Fast and Robust Next Generation Sequencing Protocol. J. Virol. Methods 2014, 202, 64–68.
- Liu, Y.; Liu, B.; Liu, C.; et al. Differences in the Gut Microbiomes of Dogs and Wolves: Roles of Antibiotics and Starch. BMC Vet. Res. 2021, 17, 112.
- Conceição-Neto, N.; Godinho, R.; Álvares, F.; et al. Viral Gut Metagenomics of Sympatric Wild and Domestic Canids, and Monitoring of Viruses: Insights from an Endangered Wolf Population. Ecol. Evol. 2017, 7, 4135–4146.
- Sarchese, V.; Fruci, P.; Palombieri, A.; et al. Molecular Identification and Characterization of a Genotype 3 Hepatitis E Virus Strain Detected in a Wolf Faecal Sample, Italy. Animals 2021, 11, 3465.
- Chen, L.; Sun, M.; Xu, D.; et al. Gut Microbiome of Captive Wolves Is More Similar to Domestic Dogs than to Wild Wolves Indicated by Metagenomics Study. Front. Microbiol. 2022, 13, 1027188.
- Wu, X.; Zhang, H.; Chen, J.; et al. Analysis and Comparison of the Wolf Microbiome under Different Environmental Factors Using Three Different Data of Next Generation Sequencing. Sci. Rep. 2017, 7, 11332.
- Bergner, L.M.; Orton, R.J.; da Silva Filipe, A.; et al. Using Noninvasive Metagenomics to Characterize Viral Communities from Wildlife. Mol. Ecol. Resour. 2019, 19, 128–143.
- Amato, K.R.; Yeoman, C.J.; Kent, A.; et al. Habitat Degradation Impacts Black Howler Monkey (Alouatta pigra) Gastrointestinal Microbiomes. ISME J. 2013, 7, 1344–1353.
- Tung, J.; Barreiro, L.B.; Burns, M.B.; et al. Social Networks Predict Gut Microbiome Composition in Wild Baboons. eLife 2015, 4, e05224.
- Bobbie, C.B.; Mykytczuk, N.C.S.; Schulte-Hostedde, A.I. Temporal Variation of the Microbiome Is Dependent on Body Region in a Wild Mammal (Tamiasciurus hudsonicus). FEMS Microbiol. Ecol. 2017, 93, fix081.
- Grieneisen, L.E.; Livermore, J.; Alberts, S.; Tung, J.; Archie, E.A. Group Living and Male Dispersal Predict the Core Gut Microbiome in Wild Baboons. Integr. Comp. Biol. 2017, 57, 770–785.
- Miller, E.A.; Ponder, J.B.; Willette, M.; Johnson, T.J.; VanderWaal, K.L. Merging Metagenomics and Spatial Epidemiology to Understand the Distribution of Antimicrobial Resistance Genes from Enterobacteriaceae in Wild Owls. Appl. Environ. Microbiol. 2020, 86, e00571-20.
- Skarżyńska, M.; Leekitcharoenphon, P.; Hendriksen, R.S.; et al. A Metagenomic Glimpse into the Gut of Wild and Domestic Animals: Quantification of Antimicrobial Resistance and More. PLoS ONE 2020, 15, e0242987.
- Jia, T.; Chang, W.S.; Marcelino, V.R.; et al. Characterization of the Gut Microbiome and Resistomes of Wild and Zoo-Captive Macaques. Front. Vet. Sci. 2022, 8, 778556.
- Zou, S.; Hu, R.; Liang, S.; et al. Assessment of Health Risk of Antibiotics Resistance Genes from Human Disturbed Habitat to Wild Animals: Metagenomic Insights into Availability and Functional Changes of Gut Microbiome. Ecotoxicol. Environ. Saf. 2024, 285, 117117.
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46.
- Lu, J.; Salzberg, S.L. Ultrafast and Accurate 16S rRNA Microbial Community Analysis Using Kraken 2. Microbiome 2020, 8, 124.
- FASTQ Toolkit. Illumina BaseSpace Sequence Hub Apps.
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Web Browser. BMC Bioinform. 2011, 12, 385.
- McArthur, A.G.; Waglechner, N.; Nizam, F.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357.
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525.
- Laflamme, D.P. Development and Validation of a Body Condition Score System for Dogs. J. Am. Anim. Hosp. Assoc. 1997, 33, 126–135.
- Eggermann, J.; da Costa, G.F.; Guerra, A.M.; Kirchner, W.H.; Petrucci-Fonseca, F. Presence of Iberian Wolf (Canis lupus signatus) in Relation to Land Cover, Livestock and Human Influence in Portugal. Mamm. Biol. 2011, 76, 217–221.
- Llaneza, L.; Lopez-Bao, J.V.; Sazatornil, V. Insights into Wolf Presence in Human-Dominated Landscapes: The Relative Role of Food Availability, Humans and Landscape Attributes. Divers. Distrib. 2012, 18, 459–469.
- Ahmadi, M.; Lopez-Bao, J.V.; Kaboli, M. Spatial Heterogeneity in Human Activities Favors the Persistence of Wolves in Agroecosystems. PLoS ONE 2014, 9, e108080.
- Kuijper, D.P.J.; Sahlen, E.; Elmhagen, B.; et al. Paws without Claws? Ecological Effects of Large Carnivores in Anthropogenic Landscapes. Proc. R. Soc. B 2016, 283, 20161625.
- DeCandia, A.L.; Cassidy, K.A.; Stahler, D.R.; et al. Social environment and genetics underlie body site specific microbiomes of Yellowstone National Park gray wolves (Canis lupus). Ecol. Evol. 2021, 11, 9472–9488.
- Nardi, F.; Lazzeri, L.; Iannotti, N.; et al. Analysis of Scat for Gut Microbiome Identification in Wolves from a Mediterranean and an Alpine Area. Diversity 2023, 15, 37. [CrossRef]
- Valerio, A.; Antonucci, A.; Giuliani, A.; et al. Wolf Prey Selection and Food Availability in the Multi-Prey Ecosystem of Majella National Park, Abruzzo. In Proceedings of the XIX Congress of Italian Ecology Society, Bolzano, Italy, 15–18 September 2009.
- Antonucci, A.; Valerio, A.; Petrizzelli, L.; et al. Maiella Wolves Do Not Like Livestock? Twenty Years of Research and Experience on Feeding Ecology of Apennine Wolf (Canis lupus italicus). In Proceedings of Wolves Across Borders Conference, Stockholm, Sweden, 8–11 May 2023.
- Di Sabatino, D.; Lorusso, A.; Di Francesco, C.E.; et al. Arctic Lineage-Canine Distemper Virus as a Cause of Death in Apennine Wolves (Canis lupus) in Italy. PLoS ONE 2014, 9, e82356.
- Zaccaria, G.; Malatesta, D.; Scipioni, G.; et al. Circovirus in Domestic and Wild Carnivores: An Important Opportunistic Agent? Virology 2016, 490, 69–74.
- Alfano, F.; Dowgier, G.; Valentino, M.P.; et al. Identification of Pantropic Canine Coronavirus in a Wolf (Canis lupus italicus) in Italy. J. Wildl. Dis. 2019, 55, 504–508.
- Balboni, A.; Musto, C.; Kaehler, E.; et al. Genetic Characterization of Canine Adenovirus Type 1 Detected by Real-Time PCR in an Oral Sample of an Italian Wolf (Canis lupus). J. Wildl. Dis. 2019, 55, 737–741.
- Amoroso, M.G.; Di Concilio, D.; D’Alessio, N.; et al. Canine Parvovirus and Pseudorabies Virus Coinfection as a Cause of Death in a Wolf (Canis lupus) from Southern Italy. Vet. Med. Sci. 2020, 6, 600.
- Ndiana, L.A.; Lanave, G.; Desario, C.; et al. Circulation of Diverse Protoparvoviruses in Wild Carnivores, Italy. Transbound. Emerg. Dis. 2021, 68, 2489–2502.
- Ndiana, L.A.; Lanave, G.; Vasinioti, V.; et al. Detection and Genetic Characterization of Canine Adenoviruses, Circoviruses, and Novel Cycloviruses from Wild Carnivores in Italy. Front. Vet. Sci. 2022, 9, 331.
- Bertelloni, F.; Cagnoli, G.; Ebani, V.V. Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves (Canis lupus italicus) Collected in a Protected Area in Central Italy. Microorganisms 2024, 12, 2367.
- Moreno, A.; Musto, C.; Gobbi, M.; et al. Detection and Molecular Analysis of Pseudorabies Virus from Free-Ranging Italian Wolves (Canis lupus italicus) in Italy—A Case Report. BMC Vet. Res. 2024, 20, 9.
- Foti, M.; Siclari, A.; Mascetti, A.; Fisichella, V. Study of the Spread of Antimicrobial-Resistant Enterobacteriaceae from Wild Mammals in the National Park of Aspromonte (Calabria, Italy). Environ. Toxicol. Pharmacol. 2018, 63, 69–73.
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, AR-BA-0009-2017.
- Kim, D.W.; Cha, C.J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp. Mol. Med. 2021, 53, 301–309.
- Pradier, L.; Bedhomme, S. Ecology, More Than Antibiotics Consumption, Is the Major Predictor for the Global Distribution of Aminoglycoside-Modifying Enzymes. eLife 2023, 12, e77015.
- Brenciani, A.; Morroni, G.; Schwarz, S.; Giovanetti, E. Oxazolidinones: Mechanisms of Resistance and Mobile Genetic Elements Involved. J. Antimicrob. Chemother. 2022, 77, 2596–2621.
- Kardos, G.; Laczkó, L.; Kaszab, E.; et al. Phylogenetic Analysis of the Genes in D-Ala-D-Lactate Synthesizing Glycopeptide Resistance Operons: The Different Origins of Functional and Regulatory Genes. Antibiotics 2024, 13, 573.
- Shahzad, S.; Willcox, M.D.P.; Rayamajhee, B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene (mcr) among Pathogens of Clinical Significance. Antibiotics 2023, 12, 1597.
- World Health Organization (WHO). Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024.
- Costa, M.M.; Pinto da Cunha, N.; Hagnauer, I.; Venegas, M. A Retrospective Analysis of Admission Trends and Outcomes in a Wildlife Rescue and Rehabilitation Center in Costa Rica. Animals 2023, 14, 51.
- Quince, C.; Walker, A.W.; Simpson, J.T.; et al. Shotgun Metagenomics, from Sampling to Analysis. Nat. Biotechnol. 2017, 35, 833–844.







| Potential pathogens | Estimate_reads T0 | Estimate_reads T1 |
| Acinetobacter baumannii | - | 284 |
| Brucella anthropi | - | 193 |
| Brucella pseudogrignonensis | 3440 | - |
| Burkholderia pseudomallei | 23 | - |
| Campylobacter coli | - | 54 |
| Campylobacter concisus | - | 70 |
| Campylobacter jejuni | 732 | - |
| Campylobacter upsaliensis | 1012 | - |
| Capnocytophaga canimorsus | 402 | 672 |
| Clostridium botulinum | 6 | 1450 |
| Clostridium novyi | 72 | - |
| Clostridium perfringens | 5241 | 172512 |
| Clostridioides difficile | 13106 | 7160 |
| Coxiella burnetii | 18 | - |
| Cutibacterium acnes | 171303 | 1107244 |
| Enterococcus faecalis | 67458 | 738853 |
| Escherichia coli | 63237325 | 10802453 |
| Haemophilus parainfluenzae | 763 | 17919 |
| Helicobacter canis | 24 | - |
| Human mastadenovirus C | 2 | 4 |
| Klebsiella pneumoniae | 2127 | 1993 |
| Legionella pneumophila | - | 11 |
| Listeria monocytogenes | - | 26 |
| Mycobacterium intracellulare | - | 39 |
| Neisseria gonorrhoeae | - | 626 |
| Neisseria meningitidis | 86 | 160 |
| Morganella morganii | 15350 | 9563 |
| Pseudomonas aeruginosa | 1344 | 6049 |
| Pseudomonas alcaligenes | - | 3106 |
| Pseudomonas putida | 924 | 2485 |
| Proteus mirabilis | 1113530 | 6972 |
| Severe acute respiratory syndrome-related coronavirus | - | 4 |
| Staphylococcus aureus | 33503 | 650 |
| Staphylococcus caprae | 5 | 12 |
| Staphylococcus epidermidis | 23997 | 151866 |
| Staphylococcus hominis | 18967 | 23442 |
| Staphylococcus hyicus | 14351 | - |
| Staphylococcus pseudintermedius | 124572 | 21 |
| Staphylococcus saprophyticus | 18 | 194 |
| Streptococcus agalactiae | 226154 | 6948 |
| Streptococcus canis | 26216 | 13 |
| Streptococcus dysgalactiae | 189164 | 54 |
| Streptococcus equinus | 9740 | 133 |
| Streptococcus pyogenes | 28121 | 64 |
| Streptococcus suis | 6873 | 1262 |
| Streptococcus uberis | 34711 | 44 |
| Vibrio cholerae | - | 51 |
| Yersinia enterocolitica | 26 | 20 |
| Antibiotic classes | AMR Gene Family | ||
| Medically important antibiotics | T0 | T1 | p value |
| Cephalosporins | RND antibiotic efflux pump, TEM beta-lactamase, EC beta-lactamase, SHV beta-lactamase, ampC-type beta-lactamase, OXA beta-lactamase, CTX-M beta-lactamase, ACT beta-lactamase, SRT beta-lactamase, class A LRA beta-lactamase, OKP beta-lactamase, SCO beta-lactamase, CepA beta-lactamase, CblA beta-lactamase, LAP beta-lactamase | RND antibiotic efflux pump,TEM beta-lactamase, EC beta-lactamase, SHV beta-lactamase, CMY beta-lactamase, MFS antibiotic efflux pump, ampC-type beta-lactamase, SMR antibiotic efflux pump OXA beta-lactamase CTX-M beta-lactamase CfxA beta-lactamase CblA beta-lactamase ADC beta-lactamases CIA beta-lactamase SRT beta-lactamase | 0.39532 |
| Authorized for use in humans only | |||
| Carbapenems | OXA beta-lactamase, SHV beta-lactamase, ACT beta-lactamase, KPC beta-lactamase, subclass B3 PEDO beta-lactamase, MFS antibiotic efflux pump, RND antibiotic efflux pump | OXA beta-lactamase, SHV beta-lactamase, IND beta-lactamase, CIA beta-lactamase, CfiA beta-lactamase, RND antibiotic efflux pump, MFS antibiotic efflux pump | 0.5063 |
| Monobactam | TEM beta-lactamase, RND antibiotic efflux pump | TEM beta-lactamase, RND antibiotic efflux pump | 0.7482 |
| Glycopeptides | vanS gene in vanA cluster, vanXY gene in vanC cluster, vanY gene in vanA cluster, vanR gene in vanC cluster, vanX gene in vanB cluster, Cfr 23S ribosomal RNA methyltransferase, Bleomycin resistant protein | vanS gene in vanA cluster, vanS gene in vanE cluster, vanY gene in vanA cluster, vanR gene in vanM cluster, Bleomycin resistant protein, RND antibiotic efflux pump | 0.8341 |
| Glycyclines | RND antibiotic efflux pump, ABC antibiotic efflux pump; MFS antibiotic efflux pump; multidrug and toxic compound extrusion (MATE) transporter | RND antibiotic efflux pump, ABC antibiotic efflux pump, MFS antibiotic efflux pump multidrug and toxic compound extrusion (MATE) transporter |
0.8179 |
| Oxazolidinone | MFS antibiotic efflux pump Miscellaneous ABC-F subfamily ATP-binding cassette ribosomal protection proteins Cfr 23S ribosomal RNA methyltransferase |
MFS antibiotic efflux pump Cfr 23S ribosomal RNA methyltransferase RND antibiotic efflux pump |
0.4693 |
| Isoniazid | MFS antibiotic efflux pump | MFS antibiotic efflux pump | |
| HPCIA | |||
| Quinolones | MFS antibiotic efflux pump, RND antibiotic efflux pump, ABC antibiotic efflux pump, MATE transporter, quinolone resistance protein (qnr) |
MFS antibiotic efflux pump, RND antibiotic efflux pump, ABC antibiotic efflux pump, MATE transporter, quinolone resistance protein (qnr) |
0.6372 |
| Polymyxins | MCR phosphoethanolamine transferase | MCR phosphoethanolamine transferase | |
| CIA | |||
| Aminoglycosides | KdpDE, RND antibiotic efflux pump, APH(6), ANT(3''), ANT(4'), ANT(6), ANT(9), AAC(6'), AAC(3), APH(2''), APH(3'), APH(3''), APH(4) | RND antibiotic efflux pump, MFS antibiotic efflux pump, SMR antibiotic efflux pump, 16S rRNA methyltransferase (A1408), 16S rRNA methyltransferase (G1405), APH(6), ANT(3'') ANT(4'), ANT(6), ANT(9) AAC(6'), AAC(3), APH(2'') APH(3'), APH(3''), APH(4) |
0.0004 |
| Ansamycins | RND antibiotic efflux pump, ABC antibiotic efflux pump, rifamycin-resistant beta-subunit of RNA polymerase (rpoB), SMR antibiotic efflux pump, rifampin ADP-ribosyltransferase (Arr), MFS antibiotic efflux pump | RND antibiotic efflux pump, ABC antibiotic efflux pump, rifamycin-resistant beta-subunit of RNA polymerase (rpoB), SMR antibiotic efflux pump, MFS antibiotic efflux pump, RbpA bacterial RNA polymerase-binding protein |
0.6115 |
| Macrolides | MFS antibiotic efflux pump; RND antibiotic efflux pump, MPH, SMR antibiotic efflux pump, msr-type ABC-F protein, Erm 23S ribosomal RNA methyltransferase, ABC antibiotic efflux pump | MFS antibiotic efflux pump, RND antibiotic efflux pump, MPH, SMR antibiotic efflux pump, msr-type ABC-F protein Erm 23S ribosomal RNA methyltransferase, non-erm 23S ribosomal RNA methyltransferase (G748), ABC antibiotic efflux pump |
0.3549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
