Submitted:
14 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Intraoperative assessment of pancreatic quality, followed by sampling for the potential isolation of Langerhans islets for subsequent autotransplantation, is currently a key component of post-total pancreatectomy diabetes mellitus treatment. The aim of this study was to quantitatively evaluate pancreatic parenchymal stiffness using optical coherence elastography (OCE) imaging, and to investigate the utility of the OCE method as a potential indicator of islet yield after pancreatectomy. A total of 41 freshly excised human pancreatic specimens, containing pancreatic ductal adenocarcinoma (PDAC) and surrounding non-tumorous tissues post-pancreatectomy, were studied. In this research, the stiffness (Young’s modulus, kPa) and its color-coded 2D distribution were calculated for various pancreatic samples using compression OCE. Stiffness values were compared between intact pancreatic parenchyma (islet-poor and islet-rich) and pancreatic lesion groups (parenchymal fibrosis and/or PDAC invasion). The data were confirmed by histological analysis. In addition, the measured stiffness values for various morphological groups of the pancreatic samples were compared with the number of isolated islets obtained from pancreatic samples after collagenase treatment. The study demonstrated that OCE can effectively distinguish areas of pancreatic lesions and identify intact pancreatic parenchyma containing Langerhans islets. A highly significant increase in mean stiffness (p<0.0001) was observed in postoperative pancreatic samples exhibiting signs of parenchymal fibrosis or PDAC invasion compared to unaffected, intact pancreatic parenchyma. For the first time, a relationship between stiffness values and the number of isolated pancreatic islets was demonstrated, in particular, the number of isolated islets significantly decreased (≤110 pcs/g) in samples exhibiting stiffness values above 150 kPa and below 75 kPa. The optimal stiffness range for the efficient isolation of islets (≥120 pcs/g) from pancreatic tissue was identified as 75–150 kPa. The study introduces a novel approach for rapid and objective intraoperative assessment of pancreatic tissue quality using real-time OCE data. This technique facilitates the identification of regions affected by pancreatic lesions and supports the selection of intact pancreatic parenchyma, potentially enhancing the accuracy of Langerhans islet yield predictions during surgical resection.