Submitted:
09 January 2026
Posted:
12 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
3. Results
4. Discussion and Conclusions
- Local emission sources between Allen Park and East 7 Mile Rd tend to reduce MDA8 O3 at the latter station below the corresponding concentration at Allen Park due to NOx titration of O3.
- Pollution layers aloft may counter O3 titration when they are turbulently entrained to the surface, thus adding directly to ground-level O3 and enhancing radical concentrations and O3 production efficiency.
- Transport of O3 around 500 m above ground level may significantly contribute to MDA8 O3 above 70 ppb at East 7 Mile Rd during southwesterly wind flow that imports pollution from a wide region in the U.S. Midwest.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Species | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| NO | 2.4 | 1.5 | 1.5 | 1.5 | 1.8 | 1.5 | 2.1 | 3.1 | 3.9 | 4.5 |
| NO2 | 7.4 | 6.0 | 6.0 | 6.7 | 7.5 | 8.1 | 10.0 | 12.6 | 15.0 | 22.1 |
| O3 | 66.4 | 76.8 | 82.6 | 82.0 | 81.1 | 84.9 | 79.5 | 73.9 | 62.2 | 48.4 |
| Ox | 73.8 | 82.8 | 88. 6 | 88.7 | 88.6 | 93.0 | 89.4 | 86.5 | 77.2 | 70.5 |
| NOy | 15.0 | 12.6 | 11.1 | 11.1 | 11.6 | 11.8 | 14.5 | 18.3 | 21.3 | 29.6 |
| Species | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| NO | 1 | 0.8 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 |
| NO2 | 6.1 | 5.1 | 2.2 | 2.1 | 2.1 | 1.7 | 2 | 2.3 | 2.6 | 2.5 |
| O3 | 61.1 | 67.7 | 71 | 72.4 | 75.6 | 77.7 | 77.9 | 80.9 | 79 | 75 |
| Ox | 67.2 | 72.8 | 73.2 | 74.5 | 77.7 | 79.4 | 79.9 | 83.2 | 81.6 | 77.5 |
| NOy | 9.4 | 8.2 | 4.4 | 4.3 | 4.3 | 3.8 | 4.2 | 4.6 | 4.9 | 4.7 |
| Species | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| NO | 142.4 | 92.1 | 639.9 | 640.7 | 808.4 | 1393.6 | 954.3 | 3012.6 | 1831.1 | 4380.2 |
| NO2 | 21.5 | 18.2 | 170.6 | 218.0 | 257.6 | 377.3 | 399.0 | 448.0 | 475.3 | 782.9 |
| O3 | 8.6 | 13.4 | 16.4 | 13.3 | 7.3 | 9.3 | 2.0 | -8.7 | -21.3 | -35.5 |
| Ox | 9.8 | 13.8 | 21.0 | 19.0 | 14.0 | 17.2 | 11.9 | 3.9 | -5.4 | -9.1 |
| NOy | 59.3 | 53.6 | 151.5 | 157.1 | 169.6 | 210.2 | 244.6 | 298.2 | 335.6 | 530.3 |
Appendix B
| O3 | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| Station | 58.3 | 67.9 | 71.2 | 66.4 | 68.3 | 69.0 | 76.9 | 76.2 | 75.3 | 70.9 |
| Model | 32.4 | 30.9 | 32.0 | 31.2 | 20.9 | 27.9 | 40.3 | 52.3 | 57.1 | 63.4 |
| BC Adj | 25.9 | 37.0 | 39.2 | 35.2 | 47.4 | 41.1 | 36.6 | 23.9 | 18.2 | 7.5 |
| CO | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| Station | 716 | 709 | 708 | 693 | 698 | 696 | 709 | 706 | 718 | 717 |
| Model | 162 | 161 | 176 | 222 | 207 | 207 | 193 | 181 | 167 | 175 |
| BC Adj | 554 | 548 | 532 | 471 | 491 | 489 | 516 | 525 | 551 | 542 |
| NOy | 9:00– 10:00 LST | 10:00 – 11:00 LST | 11:00 – 12:00 LST | 12:00 – 13:00 LST | 13:00 – 14:00 LST | 14:00 – 15:00 LST | 15:00 – 16:00 LST | 16:00 – 17:00 LST | 17:00 – 18:00 LST | 18:00 – 19:00 LST |
| Station | 10.4* | 9.2* | 8.0* | 6.8* | 5.7 | 6.1 | 6.7 | 6.2 | 7.2 | 7.6 |
| Model | 4.2 | 4.9 | 6.8 | 11.3 | 7.1 | 6.3 | 5.5 | 5.4 | 3.7 | 4.2 |
| BC Adj | 6.2 | 4.3 | 1.2 | -4.5 | -1.4 | -0.2 | 1.2 | 0.8 | 3.5 | 3.4 |
References
- U.S. Code of Federal Regulations, Title 40, Parts 50, 51, 52, 53, and 58. National Ambient Air Quality Standards for Ozone. Federal Register 2015, 80, 206.
- Olaguer, E.P. The potential ozone impacts of landfills. Atmosphere 2021, 12, 877. [Google Scholar] [CrossRef]
- Draxler, R.R. Hysplit_4 User’s Guide. In U.S. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum ERL-230; Air Resources Laboratory: Silver Spring, Maryland, USA, June 1999. [Google Scholar]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L.; et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [Google Scholar] [CrossRef]
- Olaguer, E.P. Application of an adjoint neighborhood scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II. J. Geophys. Res. Atmos. 2013, 118, 4936–4946. [Google Scholar] [CrossRef]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Liu, P.; Mu, J.; He, G.; Zhang, C.; Tong, S.; Xue, C.; Zhao, X.; Ge, M.; Mu, Y. Atmospheric NOx oxidation as major sources for nitrous acid (HONO). NPJ Clim. Atmos. Sci. 2023, 6. [Google Scholar] [CrossRef]
- Wang, L.; Chai, J.; Gaubert, B.; Huang, Y. A review of measurements and model simulations of atmospheric nitrous acid. Atmos. Environ. 2025, 347, 121094. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Madronich, S. Photodissociation in the Atmosphere, 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. 1987, 92(D8), 9740–9752. [Google Scholar] [CrossRef]
- Olaguer, E.P. Inverse modeling of formaldehyde emissions and assessment of associated cumulative ambient air exposures at fine scale. Atmosphere 2023, 14, 931. [Google Scholar] [CrossRef]
- Olaguer, E.P. Combining Real-Time Ambient Air Measurements with Inverse Modeling to Estimate Oil and Gas Industry Emissions. In EM Magazine; Air and Waste Management Association: Pittsburgh, PA, USA, September 2023. [Google Scholar]
- Olaguer, E.; Su, Y.; Stroud, C.A.; Healy, R.M.; Batterman, S.A.; Yacovitch, T.I.; Chai, J.; Huang, Y.; Parsons, M.T. The Michigan-Ontario Ozone Source Experiment (MOOSE): An overview. Atmosphere 2023, 14, 1630. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. EPA-454/B-23-005; User’s Guide for AERMOD Meteorological Preprocessor (AERMET). Office of Air Quality Planning and Standards: Research Triangle Park, North Carolina, USA, 2023.
- Arakawa, A.; Lamb, V.R. Computational design of the basic processes of the UCLA general circulation model. In Methods in Computational Physics; Academic Press, 1977; Volume 17, pp. 174–265 337 pp. [Google Scholar]
- Zannetti, P. Air Pollution Modeling; Van Nostrand Reinhold: New York, USA, 1990; p. 444 pp. [Google Scholar]
- Michigan Department of Environment; Great Lakes; and Energy. State and Local Emissions Inventory System (SLEIS). Available online: https://mienviro.michigan.gov/sleis/ (accessed on 9 December 2025).
- 18; U.S. Environmental Protection Agency. 2022v1 Emissions Modeling Platform. Available online: https://www.epa.gov/air-emissions-modeling/2022v1-emissions-modeling-platform (accessed on 9 December 2025).
- U.S. Environmental Protection Agency. Motor Vehicle Emission Simulator: MOVES5; Office of Transportation and Air Quality: Ann Arbor, Michigan, USA, November 2024. [Google Scholar]
- U.S. Environmental Protection Agency. EPA-454/R-23-001h; 2020 National Emissions Inventory Technical Support Document: Biogenics -Vegetation and Soil. Office of Air Quality Planning and Standards: Research Triangle Park, North Carolina, USA, March 2023.
- Olaguer, E.P.; Hu, Y.; Kilmer, S.; Adelman, Z.E.; Vasilakos, P.; Odman, M.T.; Vaerten, M.; McDonald, T.; Gregory, D.; Lomerson, B.; et al. Is there a formaldehyde deficit in emissions inventories for southeast Michigan? Atmosphere 2023, 14, 461. [Google Scholar] [CrossRef]
- Stroud, C.A.; Zhang, J.; Boutzis, E.I.; Zhang, T.; Mashayekhi, R.; Nikiema, O.; Majdzadeh, M.; Wren, S.N.; Xu, X.; Su, Y. Impact of solvent emissions on reactive aromatics and ozone in the Great Lakes region. Atmosphere 2023, 14, 1094. [Google Scholar] [CrossRef]
- Lake Michigan Air Directors Consortium. Attainment Demonstration Modeling for the 2015 Ozone National Ambient Air Quality Standard; Lake Michigan Air Directors Consortium: Hillside, Illinois, USA, 21 September 2022. [Google Scholar]
- Couillard, M.H.; Schwab, M.J.; Schwab, J.J.; Lu, C.-H.; Joseph, E.; Stutsrim, B.; Shrestha, B.; Zhang, J.; Knepp, T.N.; Gronoff, G.P. Vertical profiles of ozone concentrations in the lower troposphere downwind of New York City during LISTOS 2018–2019. J. Geophys. Res. Atmos. 2021, 126, e2021JD035108. [Google Scholar] [CrossRef]
- Qian, Y.; Luo, Y.; Dou, K.; Zhou, H.; Xi, L.; Yang, T.; Zhang, T.; Si, F. Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS. Sci. Total Environ. 2023, 857, 1593441. [Google Scholar] [CrossRef] [PubMed]
- He, G.; He, C.; Wang, H.; Lu, X.; Pei, C.; Qiu, X.; Liu, C.; Wang, Y.; Liu, N.; Zhang, J.; Lei, L.; Liu, Y.; Wang, H.; Deng, T.; Fan, Q.; Fan, S. Nighttime ozone in the lower boundary layer: insights from 3-year tower-based measurements in South China and regional air quality modeling. Atmos. Chem. Phys. 2023, 23, 13107–13124. [Google Scholar] [CrossRef]
- Johnson, M.S.; Rozanov, A.; Weber, M.; Mettig, N.; Sullivan, J.; Newchurch, M.J.; Kuang, S.; Leblanc, T.; Chouza, F.; Berkoff, T.A.; Gronoff, G.; Strawbridge, K.B.; Alvarez, R.J.; Langford, A.O.; Senff, C.J.; Kirgis, G.; McCarty, B.; Twigg, L. TOLNet validation of satellite ozone profiles in the troposphere: Impact of retrieval wavelengths. Atmos. Meas. Tech. 2024, 17, 2559–2582. [Google Scholar] [CrossRef]
- Delle Monache, L.; Weil, J.; Simpson, M.; Leach, M. A new urban boundary layer and dispersion parameterization for an emergency response modeling system: Tests with the Joint Urban 2003 data set. Atmos. Environ. 2009, 43, 5807–5821. [Google Scholar] [CrossRef]
- Toro, C.; Foley, K.; Simon, H.; Henderson, B.; Baker, K.R.; Eyth, A.; Timin, B.; Appel, W.; Luecken, D.; Beardsley, M.; Sonntag, D.; Possiel, N.; Roberts, S. Evaluation of 15 years of modeled atmospheric oxidized nitrogen compounds across the contiguous United States. Elem. Sci. Anth. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Bergin, R.A.; Harkey, M.; Hoffman, A.; Moore, R.H.; Anderson, B.; Beyersdorf, A.; Ziemba, L.; Thornhill, L.; Winstead, E.; Holloway, T.; Bertram, T.H. Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry. Atmos. Chem. Phys. 2022, 22, 15449–15468. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanimoto, H. Review of comprehensive measurements of speciated NOy and its chemistry: Need for quantifying the role of heterogeneous processes of HNO3 and HONO. Aerosol Air Qual. Res. 2021, 21, 200395. [Google Scholar] [CrossRef]
- Chace, W.S.; Womack, C.; Ball, K.; Bates, K.H.; Bohn, B.; Coggon, M.; Crounse, J.D.; Fuchs, H.; Gilman, J.; Gkatzelis, G.I.; et al. Ozone production efficiencies in the three largest United States cities from airborne measurements. Environ. Sci. Technol. 2025, 59, 13306–13318. [Google Scholar] [CrossRef] [PubMed]
- Tonnesen, G.S.; Dennis, R.L. Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx: 2. Long-lived species as indicators of ozone concentration sensitivity. J. Geophys. Res. Atmos. 2000, 105(D7), 9227–9241. [Google Scholar] [CrossRef]
- Xiong, Y.; Chai, J.; Mao, H.; Mariscal, N.; Yacovitch, T.; Lerner, B.; Majluf, F.; Canagaratna, M.; Olaguer, E.P.; Huang, Y. Examining the summertime ozone formation regime in southeast Michigan using MOOSE ground-based HCHO/NO2 measurements and F0AM box model. J. Geophys. Res. Atmos. 2023, 128, e2023JD038943. [Google Scholar] [CrossRef]





| 8-h O3 | 9:00 – 17:00 LST | 10:00 – 18:00 LST | 11:00 – 19:00 LST |
| Modeled | 78.4 ppb | 77.9 ppb | 74.3 ppb |
| Observed | 73.0 ppb | 75.3 ppb | 76.2 ppb |
| NMB | 7.3% | 3.4% | –2.4% |
| Species |
Modeled 9:00 – 19:00 LST |
Observed 9:00 – 19:00 LST |
NMB 9:00 – 19:00 LST |
| NO | 2.4 ppb | 0.3 ppb | 668% |
| NO2 | 10.1 ppb | 2.9 ppb | 253% |
| O3 | 73.8 ppb | 73.8 ppb | –0.08% |
| Ox | 83.9 ppb | 76.7 ppb | –9.4% |
| NOy | 15.7 ppb | 5.3 ppb | –197% |
| Experiment |
O3 9:00 – 19:00 LST |
Ox 9:00 – 19:00 LST |
OPE 9:00 – 19:00 LST |
| Base Case | 73.8 ppb | 83.9 ppb | 3.2 |
| No O3 Layers Aloft | 61.2 ppb | 73.8 ppb | 1.8 |
| Relative Difference | –17% | –12% | –44% |
| Experiment | MDA8 O3 |
| Base Case | 78.4 ppb |
| 10% NOx Reduction | 80.5 ppb |
| 10% VOC Reduction | 78.2 ppb |
| 50% VOC Reduction | 78.0 ppb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).