Preprint
Review

This version is not peer-reviewed.

Review Paper: Real-Time Engine Oil Quality Monitoring Using Microcontroller-Based Sensor Fusion and AI

  † These authors contributed equally to this work.

Submitted:

09 January 2026

Posted:

12 January 2026

You are already at the latest version

Abstract
Engine oil degradation critically influences the performance, efficiency, and longevity of internal combustion engines. Conventional mileage or time-based replacement schedules often result in premature oil changes or delayed servicing, both of which compromise engine health and increase costs. This review examines recent advances in real-time oil condition monitoring and evaluates the feasibility of a low-cost microcontroller-based system that integrates physical sensors with machine learning models for continuous on-board oil health assessment. Drawing on established techniques from industrial lubrication monitoring, we propose an experimental framework that leverages electrical engineering principles, including sensor interface, analog front-end design, signal acquisition, and embedded AI deployment to enable accurate, affordable, and scalable oil health diagnostics. The review highlights opportunities for innovation in embedded systems and electrical engineering design, positioning AI-driven monitoring as a practical solution for predictive automotive maintenance.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated