Submitted:
10 January 2026
Posted:
12 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
3. Discussion
4. Material and Methods
- Animals and experimental models
- Induction of DM and glycemic monitoring
- Metabolic cage
- Collection and Preparation of Tissues for Histological and Histochemical Analysis
- Determination of biochemical and renal function evaluations
- Glycemia and HbA1c
- Plasma urea
- Serum and urine creatinine
- Creatinine clearance
- Proteinuria
- ApoA, ApoB in plasma and urine
- Cystatin C
- Statistical analysis
5. Conclusion
Author Contributions
Funding
Acknowledgments
Personal Acknowledgments:
Disclosure
Conflicts of Interest
References
- Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci. 21(5). [CrossRef]
- Mirza AC, Panchal SS, Allam AA, Othman SI, Satia M, Mandhane SN. (2022) Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules. 27(19). [CrossRef]
- Forbes JM, Cooper ME. (2013) Mechanisms of diabetic complications. Physiol Rev. 93(1):137-88. [CrossRef]
- Barbosa JH, Oliveira SL, Seara LT. (2008) [The role of advanced glycation end-products (AGEs) in the development of vascular diabetic complications]. Arq Bras Endocrinol Metabol. 52(6):940-50. [CrossRef]
- Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, et al. (2018) Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 16:32-46. [CrossRef]
- Yanase T, Yanagita I, Muta K, Nawata H. (2018) Frailty in elderly diabetes patients. Endocr J. 65(1):1-11. [CrossRef]
- Wu Y, Wang Y, Zhang J, Zhang R, Zhao L, Ren H, et al. (2021) Early-onset of type 2 diabetes mellitus is a risk factor for diabetic nephropathy progression: a biopsy-based study. Aging (Albany NY). 13(6):8146-54. [CrossRef]
- Dugbartey GJ, Alornyo KK, Diaba DE, Adams I. (2022) Activation of renal CSE/H. Biomed Pharmacother. 153:113386. [CrossRef]
- Song P, Chen Y, Liu Z, Liu H, Xiao L, Sun L, et al. (2022) LncRNA MALAT1 Aggravates Renal Tubular Injury. Front Endocrinol (Lausanne). 13:895360. [CrossRef]
- Carmona M, Paco-Meza LM, Ortega R, Cañadillas S, Caballero-Villarraso J, Blanco A, et al. (2022) Hypoxia preconditioning increases the ability of healthy but not diabetic rat-derived adipose stromal/stem cells (ASC) to improve histological lesions of streptozotocin-induced diabetic nephropathy. Pathol Res Pract. 230:153756. [CrossRef]
- Huang S, Wang J, Zhang L, Tian S, Wang Y, Shao X, et al. (2022) Ras guanine nucleotide-releasing protein-4 promotes renal inflammatory injury in type 2 diabetes mellitus. Metabolism. 131:155177. [CrossRef]
- van Aanhold CCL, Koudijs A, Dijkstra KL, Wolterbeek R, Bruijn JA, van Kooten C, et al. (2022) The VEGF Inhibitor Soluble Fms-like Tyrosine Kinase 1 Does Not Promote AKI-to-CKD Transition. Int J Mol Sci. 23(17). [CrossRef]
- Tian D, Li J, Zou L, Lin M, Shi X, Hu Y, et al. (2021) Adenosine A1 Receptor Deficiency Aggravates Extracellular Matrix Accumulation in Diabetic Nephropathy through Disturbance of Peritubular Microenvironment. J Diabetes Res. 2021:5584871. [CrossRef]
- da Luz MJ, da Costa VAA, Balbi APC, Bispo-da-Silva LB. (2022) Effects of Disodium Cromoglycate Treatment in the Early Stage of Diabetic Nephropathy: Focus on Collagen Deposition. Biol Pharm Bull. 45(3):245-9. [CrossRef]
- Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, et al. (2021) The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab. 4(3):e00278. [CrossRef]
- Fujii A, Sunatani Y, Furuichi K, Fujimoto K, Adachi H, Iwabuchi K, et al. (2020) DNA damage in human glomerular endothelial cells induces nodular glomerulosclerosis via an ATR and ANXA2 pathway. Sci Rep. 10(1):22206. [CrossRef]
- Nowak N, Skupien J, Niewczas MA, Yamanouchi M, Major M, Croall S, et al. (2016) Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int. 89(2):459-67. [CrossRef]
- Bukosza EN, Kaucsár T, Godó M, Lajtár E, Tod P, Koncsos G, et al. (2019) Glomerular Collagen Deposition and Lipocalin-2 Expression Are Early Signs of Renal Injury in Prediabetic Obese Rats. Int J Mol Sci. 20(17). [CrossRef]
- Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. (2004) Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med. 54(3):252-7.
- Silva VDd, Nogueira RMB. (2015) Diabetes mellitus experimental induzido com aloxana em ratos Wistar [ Experimental diabetes mellitus induced with alloxan in Wistar rats]. Revista de Ciências Farmacêuticas Básica e Aplicada [Journal of Basic and Applied Pharmaceutical Sciences]. 36(1):8.
- Lerco MM, Spadella CT, Machado JLM, Schellini SA, Padovani CR. (2003) Caracterização de um modelo experimental de Diabetes Mellitus, induzido pela aloxana em ratos: estudo clínico e laboratorial. Acta Cirúrgica Brasileira. 18:132-42. [CrossRef]
- Lenzen S. (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 51(2):216-26. [CrossRef]
- Beçak W, Paulete J. (1976) Técnicas de Citologia e Histologia. Rio de Janeiro.
- Suhariningsih S, Astuti SD, Husen SA, Winarni D, Rahmawati DA, Mukti AT, et al. (2020) The combined effect of magnetic and electric fields using on/off infrared light on the blood sugar level and the diameter of Langerhans islets of diabetic mice. Vet World. 13(10):2286-93. [CrossRef]
- Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, et al. (2021) The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev. 42(5):528-83. [CrossRef]
- Jiang WJ, Xu CT, Du CL, Dong JH, Xu SB, Hu BF, et al. (2022) Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics. 12(1):324-39. [CrossRef]
- Palau V, Jarrín J, Villanueva S, Benito D, Márquez E, Rodríguez E, et al. (2021) Endothelial ADAM17 Expression in the Progression of Kidney Injury in an Obese Mouse Model of Pre-Diabetes. Int J Mol Sci. 23(1). [CrossRef]
- Liang G, Song L, Chen Z, Qian Y, Xie J, Zhao L, et al. (2018) Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int. 93(1):95-109. [CrossRef]
- Kamli-Salino SEJ, Brown PAJ, Haschler TN, Liang L, Feliers D, Wilson HM, et al. (2023) Induction of experimental diabetes and diabetic nephropathy using anomer-equilibrated streptozotocin in male C57Bl/6J mice. Biochem Biophys Res Commun. 650:109-16. [CrossRef]
- Uehara-Watanabe N, Okuno-Ozeki N, Minamida A, Nakamura I, Nakata T, Nakai K, et al. (2022) Direct evidence of proximal tubular proliferation in early diabetic nephropathy. Sci Rep. 12(1):778. [CrossRef]
- Russo GL, Stampone E, Cervellera C, Borriello A. (2020) Regulation of p27. Biomolecules. 10(9).
- Ma Z, Li L, Livingston MJ, Zhang D, Mi Q, Zhang M, et al. (2020) p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. J Clin Invest. 130(9):5011-26. [CrossRef]
- Zheng GS, Tan YM, Shang YY, Liu YP, Hu BA, Wang D, et al. (2021) CIDEC silencing attenuates diabetic nephropathy via inhibiting apoptosis and promoting autophagy. J Diabetes Investig. 12(8):1336-45. [CrossRef]
- Cui Y, Shi Y, Bao Y, Wang S, Hua Q, Liu Y. (2018) Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4. Biomed Pharmacother. 99:422-30. [CrossRef]
- Elsaed WM, Mohamed HA. (2017) Dietary zinc modifies diabetic-induced renal pathology in rats. Ren Fail. 39(1):246-57. [CrossRef]
- Mohammad HMF, Galal Gouda S, Eladl MA, Elkazaz AY, Elbayoumi KS, Farag NE, et al. (2023) Metformin suppresses LRG1 and TGFβ1/ALK1-induced angiogenesis and protects against ultrastructural changes in rat diabetic nephropathy. Biomed Pharmacother. 158:114128. [CrossRef]
- Babelova A, Burckhardt BC, Wegner W, Burckhardt G, Henjakovic M. (2015) Sex-differences in renal expression of selected transporters and transcription factors in lean and obese Zucker spontaneously hypertensive fatty rats. J Diabetes Res. 2015:483238. [CrossRef]
- Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. (2023) Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep. 14:57-63. [CrossRef]
- Sagar RC, Ajjan RA, Naseem KM. (2022) Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int J Mol Sci. 2022;23(9). [CrossRef]
- Wu T, Ding L, Andoh V, Zhang J, Chen L. (2023) The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel). 13(2). [CrossRef]
- Wang J, Feng Y, Zhang Y, Liu J, Gong L, Zhang X, et al. (2022) TNF-α and IL-1β Promote Renal Podocyte Injury in T2DM Rats by Decreasing Glomerular VEGF/eNOS Expression Levels and Altering Hemodynamic Parameters. J Inflamm Res. 15:6657-73. [CrossRef]
- Rowland J, Akbarov A, Maan A, Eales J, Dormer J, Tomaszewski M. (2018) Tick-Tock Chimes the Kidney Clock - from Biology of Renal Ageing to Clinical Applications. Kidney Blood Press Res. 43(1):55-67. [CrossRef]
- Matsui T, Nakashima S, Nishino Y, Ojima A, Nakamura N, Arima K, et al. (2015) Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab Invest. 95(5):525-33. [CrossRef]
- Nishizono R, Kikuchi M, Wang SQ, Chowdhury M, Nair V, Hartman J, et al. (2017) FSGS as an Adaptive Response to Growth-Induced Podocyte Stress. J Am Soc Nephrol. 28(10):2931-45. [CrossRef]
- Hu Z, Fang W, Liu Y, Liang H, Chen W, Wang H. (2021) Acute glucose fluctuation promotes RAGE expression via reactive oxygen species-mediated NF-κB activation in rat podocytes. Mol Med Rep. 3(5). [CrossRef]
- Jun JE, Choi YJ, Lee YH, Kim DJ, Park SW, Huh BW, et al. (2018) ApoB/ApoA-I ratio is independently associated with carotid atherosclerosis in type 2 diabetes mellitus with well-controlled LDL cholesterol levels. Korean J Intern Med. 33(1):138-47. [CrossRef]
- Abitbol CL, Ingelfinger JR. (2009) Nephron mass and cardiovascular and renal disease risks. Semin Nephrol. 29(4):445-54. [CrossRef]
- Bertram JF, Cullen-McEwen LA, Egan GF, Gretz N, Baldelomar E, Beeman SC, et al. (2014) Why and how we determine nephron number. Pediatr Nephrol. 29(4):575-80. [CrossRef]
- Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S. (2019) The Dual Role of the Pervasive "Fattish" Tissue Remodeling With Age. Front Endocrinol (Lausanne). 10:114. [CrossRef]
- Wei Q, Qiu W, Liu Q, Jiang Y. (2022) Relationship Between Risk Factors and Macular Thickness in Patients with Early Diabetic Retinopathy. Int J Gen Med. 15:6021-9. [CrossRef]
- Zhang J, Liu J, Qin X. (2018) Advances in early biomarkers of diabetic nephropathy. Rev Assoc Med Bras (1992). 64(1):85-92. [CrossRef]
- Xu T, Xu X, Zhang L, Zhang K, Wei Q, Zhu L, et al. (2021) Lipidomics Reveals Serum Specific Lipid Alterations in Diabetic Nephropathy. Front Endocrinol (Lausanne). 12:781417. [CrossRef]
- Boddana P, Caskey F, Casula A, Ansell D. (2009) UK Renal Registry 11th Annual Report (December 2008): Chapter 14 UK Renal Registry and international comparisons. Nephron Clin Pract. 111 Suppl 1:c269-76. [CrossRef]
- Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, et al. (2016) HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice. Diabetes. 65(5):1387-97. [CrossRef]
- Kreel L, Sandin B. (1973) Changes in pancreatic morphology associated with aging. Gut. 14(12):962-70. [CrossRef]
- Kimura T, Isaka Y, Yoshimori T. (2017) Autophagy and kidney inflammation. Autophagy. 13(6):997-1003. [CrossRef]




| Parameters | CSA | DMA | *p | CSI | DMI | *p |
|---|---|---|---|---|---|---|
| Glycemia (mg/dl) | 132,4 ± 45, n= 5 | 462,7 ± 98, n= 9 | 0,001* | 106,8 ± 9,2, n= 9 | 447,4 ± 125,7, n= 7 | 0,0002* |
| HbA1c(%) | 4,5 ± 0,2, n= 5 | 9,0 ± 2, n=8 | 0,0016* | 4,6 ± 0,05, n= 5 | 9,3 ± 1,3, n= 4 | 0,008* |
| Urea ( mg/dL) | 48,5 ± 6,9, n= 5 | 135,5 ± 38,3, n= 6 | 0,0043* | 45,4 ± 9,1, n= 9 | 93,2 ± 53,8, n= 7 | 0,023* |
|
Plasmatic Crea. (mg/dL) |
0,6 ± 0,1, n= 5 | 0,7 ± 0,1, n= 6 | 0,0065* | 0,5 ± 0,1, n= 9 | 0,7 ± 0,1, n= 7 | 0,01* |
| Urinary Crea. (mg/dL) | 60,7 ± 11,2, n=5 | 21,7 ± 10,3, n= 9 | 0,001* | 63,2 ± 40,8, n= 9 | 26,4 ± 14,5, n= 6 | 0,0360* |
|
Creatine clearance |
0,3 ± 0,2, n= 5 | 0,2 ± 0,0, n= 4 | 0,1 | 0,6 ± 0,2, n= 5 | 0,3 ± 0,1, n= 4 | 0,0317* |
|
Proteinuria (mg/dl) |
16 ± 3,1, n= 5 | 12,5 ± 2,3, n= 9 | 0,0460* | 28,3 ± 15,7, n= 9 | 19,5 ± 11,4, n= 6 | 0,11 |
| Apo B/A ratio | 1,2 ± 0,7, n= 5 | 0,8 ± 0,2, n= 6 | 0,6623 | 0,8 ± 0,3, n= 9 | 0,4 ± 0,2, n= 6 | 0,1 |
|
Ureia/creatinine ratio |
33,6 ± 4,6, n= 5 | 63 ± 20, n= 4 | 0,0145* | 63,5 ± 23,8, n= 5 | 43,7 ± 24, n= 5 | 0,54 |
| Age | Number of Glomeruli ± SD | P value | Variations | ||
|---|---|---|---|---|---|
| Sham Control | Diabetics | ||||
| Glomeruli per field | Adult | 49,5 ± 13; n= 5 | 40,1 ± 8,8; n= 5 | 0,0619 | - |
| Elderly | 60,5 ± 11,7; n= 5 | 44,7 ± 10,9; n= 5 | 0,0071* | ↓ | |
| Glomeruli per slide | Adult | 2,4 ± 0,6; n= 5 | 2 ± 0,4; n= 5 | 0,0619 | - |
| Elderly | 3 ± 0,6; n= 5 | 2,2 ± 0,5; n= 5 | 0,0071* | ↓ | |
| Group | Correlation | R value | P value |
|---|---|---|---|
| Adult | Glomeruli per slide X ApoB/ApoA, n= 5 Glomeruli per field X ApoB/ApoA, n= 5 |
-0,9750 -0,9750 |
0,0047* 0,0047* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
