Submitted:
08 January 2026
Posted:
09 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Procedure
- Observation of mangrove vegetation; Mangrove vegetation was observed at three locations, corresponding to restoration years: 2009, 2011, and 2013, all situated in North Sumatra. In each site, 10 plots were established using a combination of stripe and gridline methods [26] to analyze the vegetation.
- Observation of aquatic fauna; Fish collection was carried out in the waters surrounding the restored mangrove forests in Lubuk Kertang. Sampling was carried in June, August, and December 2021 at the locations shown in Figure 1. Local fishing methods were employed using boats and ‘kedera’ nets, which have a length of 150 m and a width of 1.5 m. The mesh size of the nets consists of three layers, namely 1, 1.5, and 1.6 inches. After collecting the specimens, they were identified based on [27] and [28], with species verification through FishBase.org.
- Water quality measurement; Water quality parameters were measured for each fish sampling period in June, August, and December 2021. These parameters measured included; DO (mg/L), pH, salinity (ppm), and temperature (ºC). The data was compiled and analyzed using Microsoft Excel 2016.
2.3. Data Analysis
3. Results
3.1. Density and Diversity of Mangrove Vegetation
3.2. Diversity and Composition of Fishes
3.3. Fish diversity Index
3.4. Water Quality
4. Discussion
4.1. Density and Diversity of Mangrove Vegetation Restoration
4.2. Diversity and Composition of Fishes
4.3. Diversity Index of Fishes
4.4. Water Quality
4.5. Implications for Sustainable Coastal Development and the SDGs
5. Conclusions
6. Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontalo-Herazo, M.; Piou, C., Vogt, J., Saint-Paul, U.; Berger, U. Simulating harvesting scenarios towards the sustainable use of mangrove forest plantations. Wetlands Ecol Manage. 2011, 19, 397-407. [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Scientific Reports, 2018, 8:13298, 1-11. [CrossRef]
- Romanach, S.S.; DeAngelis, D.L., Koh, H.L., Li, Y., Teh, S.Y., Barizan, R.S.R., & Zhai, L. Conservation and restoration of mangroves: global status, perspectives, and prognosis. Ocean and Coastal Management, 2018, 154, 72-82. [CrossRef]
- Husain, P.; Al Idrus, A.; Ihsan, M.S. The ecosystem services of mangrove for sustainable coastal area and marine fauna in Lombok, Indonesia: A Review. Jurnal Inovasi Pendidikan dan Sains, 2020, 1(1): 1-7. [CrossRef]
- Adite, A.; Toko, I.I.; Gbankoto, A. Fish assemblages in the degraded mangrove ecosystems of the coastal zone, Benin, West Africa: implication for ecosystem restoration and resources conservation. Journal of Environmental Protection, 2013, 4, 1461-1475. [CrossRef]
- Hadwen, W.L., Russell, G.L., & Arthington, A.H. Gut content and stable isotope-derived diets of four commercially and recreationally important fish species intermittently open estuaries. Marine and Freshwater Research, 2007, 58(4). https://ui.adsabs.harvard.edu/link_gateway/2007MFRes..58..363H/doi:10.1071/MF06157.
- Zagars, M.; Ikejima, K.; Kasai, A.; Arai, N.; Tongnunui, P. Trophis characteristics of a mangrove fish community in Southwest Thailand: important mangrove contribution and intraspecies feeding variability. Estuarine Coastal and Shelf Science, 2013, 119, 145-152. [CrossRef]
- Abrantes, K.G.; Johnston, R.; Connoly, R.M.; Sheaves, M. Importance of mangrove carbon for aquatic food webs in wet-dry tropical estuaries. Estuaries and Coasts, 2015, 38, 383-399. [CrossRef]
- Muro-Torres, V.M.; Amezcua, F.; Soto-Jimenez, M.; Balart, E.F.; Serviere-Zaragoza, E.; Green, L.; Rajnohova J. Primary sources and food web structure of a tropical wetland with a high density of mangrove forest. Water, 2020, 12, 3105, 18 p. [CrossRef]
- Abrantes, K.; Sheaves, M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuarine. Coastal and Shelf Science, 2008. 80, (3), 401-402. [CrossRef]
- Romanach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Barizan, R.S.R.; Zhai, L. Conservation and restoration of mangroves: global status, perspectives, and prognosis. Ocean and Coastal Management, 2018, 154, 72-82. [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Change Biol, 2020, 26, 5844-5855. [CrossRef]
- Onrizal, Mangrove: Important natural resources under threat. Wanamina, 2013, 3, (1), 1-9. https://onrizal.wordpress.com/2013/12/24/mangrove-sumberdaya-alam-penting-yang-terancam/ [Indonesian].
- Ilman, M.; Dargusch, P.; Dart, P.; Onrizal. A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy, 2016, 54, 448-459. [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences, 2016, 1132, 344-349. [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Change Biol, 2020. 26, 5844-5855. [CrossRef]
- Onrizal.; Thoha, A.S.; Ahmad, A.G.; Mansor, M. Mangrove loss drives global warming. In Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches, 2018, 102-105. [CrossRef]
- Ellison, A.M.; Felson, A.J ; Friess, D.A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci, 2020, 7(327):1-19. [CrossRef]
- Andradi-Brown, D.; Howe, C.; Mace, G.; Knight, A.T. Do mangrove forest restoration or rehabilitation activities return biodiversity to pre-impact levels, Environmental Evidence 2013, 2:20. http://www.environmentalevidencejournal.org/content/2/1/20.
- Ellison, A.M.; Felson, A.J.; Friess, D.A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci, 2020, 7(327):1-19. [CrossRef]
- Onrizal; Thoha, A.S.; Ahmad, A.G.; Mansor, M. Mangrove loss drives global warming. Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches. 2018, 1, 102-105, Medan, Indonesia, 30 August 2018. [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Change Biol, 2020, 26, 5844-5855. [CrossRef]
- Sukardjo, S. Fisheries associated with mangrove ecosystem in Indonesia: a view from a mangrove ecologist. Biotropia, 2004, 23, 13‐39. https://journal.biotrop.org/index.php/biotropia/article/view/201.
- Blaber, S.J.M. Mangrove and fishes: issues of diversity, dependence, and dogma. Bulletin of Marine Science Miami, 2007, 80(3), 457-472, https://www.ingentaconnect.com/content/umrsmas/bullmar/2007/00000080/00000003/art00004#.
- Negelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; Somerfield, P.J. The habitat function of mangrove for terrestrial and marine fauna: A review. Aquatic Botany, 2008, 89(2), 155-185. [CrossRef]
- Onrizal. Guide to the introduction and analysis of mangrove forest vegetation, 2008, https://onrizal.wordpress.com/2008/11/26/panduan-pengenalan-dan-analisa-vegetasi-hutan-mangrove/ access on 28 Dec 2025. [Indonesian].
- Kottelat, M.; AJ Whitten, S.N.; Kartikasari, S; Wirjoatmodjo. Freshwater Fishes of Western Indonesia and Sulawesi. Peripilus Edition. (HK) Ltd. And EMDI. Indonesia, 1993; 221 p.
- Allen, G. Marine fishes of South East Asia. Western Australian Museum. Perth. 1997; 147 p.
- Shannon, C.E.; Weiner, W. The Mathematical theory of communication. Urbana. IL: University of Illinois Press Urbana. 1949, 117p.
- Pielou, E.C. Species diversity and pattern diversity in the study of ecological succession. J Theore Biol, 1966, 3, 131-144. [CrossRef]
- Odum, E. P. Fundamentals of ecology (3rd Edition). WB Soundress Co., University of Minnesota, 1971; 574 p.
- Basyuni, M.; Habib, A.A.; Slamet, B.; Sulistiyono, N.; Putri, L.A.P.; Bimantara, Y.; Yusraini, E.; Lesmana, I. Assessment of one-year mangrove reforestation using Rhizophora apiculate seedling in Lubuk Kertang Village, North Sumatra. AEFS. IOP Conf. Series: Earth and Environmental Science, 2019. 260:012114. [CrossRef]
- Setyawan, A.D.; Ulumuddin, Y.I.; Ragayan, P. Review: mangrove hybrid of Rhizophora and its parental species in Indo-Malayan region. Nusantara Bioscience, 2014. 6(1), 69-81. [CrossRef]
- Mustika, D.I.; Rusdiana, O.; Sukendro, A. The development of Rhizophora apiculate at mangrove nursery of Muara Teluk Naga Village, Tangerang District, Banten. Bonorowo Wetlands, 2014, 4(2):108-116. [CrossRef]
- Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. Mangrove guidebook for Southeast Asia. FAO and Wetland International. Thailand, 2007; 769 p.
- Rahmat, D.; Fauziyah; Sarno. Seedling growth of Rhizophora apiculate at mangrove restoration area Sembilang National Park, South Sumatera. Maspari Journal, 2015, 7(2), 11-18.
- Qui, S.; Zhou, R.C.; Li, Y.Q.; Havanond, S.; Jaengjai, C.; Shi, S.H. Molecular evidence for natural hybridization between Sonneratia alba and S. Griffithii. Journal of Systematics and Evolution. 2008, 46(3), 391-395. [CrossRef]
- Kathiresan K & Rajendran N. Growth of mangrove (Rhizophora apiculata) seedlings as influenced by GA3, light, and salinity. Rev. Biol. Trop, 2002, 50(2), 525-530, https://pubmed.ncbi.nlm.nih.gov/12298283/.
- Whitehead, P.J.P.; Nelson, G.J.; Wongratana, T. FAO Fisheries Synopsis No. 125. Vol 7 part 2. Species Catalogue Clupeoid fishes of the world. United Nation Development Program, FAO, Rome, 1988; 176 pp.
- Dalzell, P.J.; A.D. Lewis. The fisheries biology and ecology of anchovy genera Stolephorus and Encrasicholina in the Indo-West Central Pacific Region. Fisheries Centre Research Reports 32(1). Institute for the Oceans and Fisheries, University of British Columbia, 2023, 107 p.
- Hata, H.; Lavoué, S.; Motomura, H. A New Species of the Bengal Spined Anchovy Stolephorus from the Eastern Indian Ocean and Redescription of Stolephorus dubiosus Wongratana, 1983, with Comments on the Evolution of Prepelvic Scute Numbers within Stolephorus (Clupeiformes: Engraulidae). Zoological Studies, 2022, 61, e58. [CrossRef]
- Gangan, S.; Kumar, A.P.; Jahageerdar, S.; Jaiswar, A.K. A new species of Stolephorus (Clupeidae: Engraulidae) from the Bay of Bengal, India. Zootaxa, 2020, 4743 (4): 561-574. [CrossRef]
- Musarratulain; Masood, Z.; Bibi, R.; Bibi, M.; Gul, H.; Faroog, R.Y.; Jamil, N. Growth profile of an Indian anchovy species, Stolephorus indicus (van Hasselt, 1823) of family Engraulidae from Keti Bunder, Sindh, Pakistan. Global Vetrinaria, 2015, 14(4):619-622. [CrossRef]
- Young, S.; Chiu, T.S.; Shen, S.C. A revision of the family Engraulidae (Pisces) from Taiwan. Zoological Studies, 1994. 33(3):217-227.
- Dalyan, C; Yemisken, E.; Erguden, D.; Turan, C.; Eryilmaz, L. First record of the Indian Ocean anchovy Stolephorus ensularis Hardenberg, 1933 from the northeastern Mediterranean coast of Turkey. J Appl. Ichthyol, 2014, 1-2. [CrossRef]
- Fricke, R.; Golani, D.; Appelbaum-Golani, B. First record of the Indian anchovy Stolepthorus indicus (van Hasselt, 1823) (Clupeiformes: Engraulidae in the Mediterranean Sea. BioInvasions Records, 2015, 4, 293-297. [CrossRef]
- Suprastini; Ardli, E.R.; Nuryanto, A. Diversitas dan distribusi ikan di Segara Anakan Cilacap. Scripta Biologia, 2014, 1(2), 147-15. [CrossRef]
- Rahayu, S.M.; Wiryanto; Sunarto. Biodiversity of crustacea in mangrove area, Purworejo regency. Central Java. J Sains Dasar, 2017, 6(1):57-65. [CrossRef]
- Gopal, R.V.; Ramasubramanian, V.; Santhosh, B.; Abraham, K.M. Food spectrum and dietary preferences of the Indian anchovy Stolephorus indicus (van Hasselt, 1823) from Thiruvananthapuram coast, Kerala. Indian J Fish, 2018. 65(1): 15-19. [CrossRef]
- Syafei, L.S.; Siregar, R.S.; Rahardjo, M.F.; Simajuntak, C.P.H. Diet composition and trophic niche similarities of engraulid fishes in Pabean bay, Indramayu, Indonesia. IOP Conf. Series: Earth and Environmental Science, 2020, 404, 012056. [CrossRef]
- Redjeki, S. Komposisi dan kelimpahan ikan di ekosistem mangrove di Kedungmalang Jepara. Ilmu Kelautan, 2013, 18(1): 54-60.
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the world. 5th. Ed. H,oboken (NJ): John Wiley and Sons, 2016, 752.
- Mwandy, A.W.; Mgaya, Y.D.; Ohman, M.C.; Bryceson, I.; Gullstrom, M. Distribution patterns of striped mullet Mugil cephalus in mangrove creeks, Zanzibar, Tanzinia. African Journal of Marine Science, 2010, 32(1), 85-93. [CrossRef]
- Darmarini, A. S.: Desrita, D.; Onrizal, O. Kebiasaan makanan beberapa jenis ikan di ekosistem mangrove Lubuk Kertang, Sumatera Utara. Jurnal Kelautan Tropis, 2023, 26(2), 293-300. [CrossRef]
- Hutchinson, J.; Spalding, M.D.; zu Ermgassen, P.S.E. The role mangrove in fisheries enhancement. The Nature Conservancy and Wetlands International in 2014. University of Cambridge, 2014, 54 p.
- Kalor, D.J; Indrayani, E.; Akobiarek, M.N.R. Fisheries resources of mangrove ecosystem in Demta Gulf, Jayapura, Papua, Indonesia. AACL Bioflux, 2019. 12(1): 219-229.
- Ridlo, I.A.; Kurniawan, N.; Retnaningdyah, C. Communities structure of fish in some mangrove ecosystem as a result of the restoration in Southern Beach of Malang, East Java, Indonesia. ISSMART; Journal of Physics: Conference Series, 2020, 1665, 012020. [CrossRef]
- Darmarini, A.S. ; Wardiatno, Y; Prartono T; Soewardi, K.; Samosir, A.M.; Zainuri M. Mangrove community structure in Lubuk Damar Coast, Seruway, Aceh Tamiang. Journal of Natural Resources and Environmental Management 2022, 12(1), 72-81. [CrossRef]
- Sukardjo, S. Fisheries associated with mangrove ecosystem in Indonesia: a view from a mangrove ecologist. Biotropia. 2004, 23, 13-39. [CrossRef]
- Lei, Z.; Tingting, Z.; Ziyi, Z.; Beibei, L.; Wuhui, L.; Guobao, C. Biodiversity and spatial heterogeneity of fish communities in response to geo-environmental disturbances. Estuarine, Coastal and Shelf Science, 2025, 320, 109322. [CrossRef]
- Stefani, F.; Fasola, E.; Marziali, L.; Tirozzi, P.; Schiavon, A.; Bocchi, S.; Gomarasca, S. Response of functional diversity of fish communities to habitat alterations in small lowland rivers. Biodivers Conserv, 2024, 33, 1439–1458. [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996, 379, 718–720. [CrossRef]
- Mitra, A. Acidification of mangrove water. Mangrove Bulletin. 2018, . [CrossRef]
- Ma, Y.; Wang, W.; Gao, F.; Yu, C.; Feng, Y.; Gao, L.; Zhou, J.; Shi, H.; Liu, C., Kong, D.; Zhang, X.; Li, R.; Xie, J. Acidification and hypoxia in seawater, and pollutant enrichment in the sediments of Qi’ao Island mangrove wetlands, Pearl River Estuary, China. Ecological Indicators, 2023. 158, 111589. [CrossRef]
- United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (A/RES/70/1). United Nations General Assembly, 2015, 35 p.
- Blankespoor, B.; Dasgupta, S; Lange, G.M. Mangroves as a protection from storm surges in a changing climate. Ambio, 2017, 46(4), 478–491. [CrossRef]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, 2019, 765 p.
- Hutchinson, J.; Spalding, M.D.; zu Ermgassen, P.S.E. The role mangrove in fisheries enhancement. The Nature Conservancy and Wetlands International in 2014. University of Cambridge, 2014, 54 p.
- Schindler Murray, L.; Milligan, B., et al. The blue carbon handbook: Blue carbon as a nature-based solution for climate action and sustainable development. High Level Panel for a Sustainable Ocean Economy, 2023, 84 p.






| Order | Family | Genus | Species | Relative abundance (%) |
| Acanthuriformes | Ephippidae | Ephippus | Ephippus argus | 0.36 |
| Leiognathidae | Eublekeeria | Eublekeeria jonesi | 3.26 | |
| Secutor | Secutor interruptus | 1.21 | ||
| Scatophagidae | Scatophagus | Scatophagus argus | 0.60 | |
| Siganidae | Siganus | Siganus canaliculatus | 0.60 | |
| Anabantiformes | Channidae | Channa | Channa striata | 0.12 |
| Anguilliformes | Muraenesocidae | Muraenesox | Muraenesox cinereus | 0.36 |
| Beloniformes | Hemiramphidae | Hemiramphus | Hemiramphus sp. | 1.93 |
| Hyporhamphus | Hyporhamphus quoyi | 0.12 | ||
| Carangaria | Sphyraenidae | Sphyraena | Sphyraena barracuda | 0.36 |
| Toxotidae | Toxotes | Toxotes jaculatrix | 0.97 | |
| Carangiformes | Carangidae | Scomberoides | Scomberoides sp. | 0.24 |
| Atule | Atule mate | 0.24 | ||
| Selaroides | Selaroides leptolepis | 0.24 | ||
| Xiphiidae | Xiphias | Xiphias sp. | 0.24 | |
| Clupeiformes | Clupeidae | Herklotsichthys | Herklotsichthys dispilonotus | 0.60 |
| Anodontostoma | Anodontostoma chacunda | 0.48 | ||
| Dussumieriidae | Dussumieria | Dussumieria acuta | 1.33 | |
| Dussumieria elopsoides | 3.62 | |||
| Pristigasteridae | Ilisha | Ilisha striatula | 2.54 | |
| Engraulidae | Setipinna | Setipinna tenuifilis | 1.33 | |
| Stolephorus | Stolephorus indicus | 25.36 | ||
| Stolephorus | Stolephorus waitei | 3.62 | ||
| Thryssa | Thryssa hamiltonii | 8.45 | ||
| Eupercaria | Sciaenidae | Johnius | Johnius tracheyephalus | 0.12 |
| Gerreidae | Gerres | Gerres filamentosus | 0.36 | |
| Lutjanidae | Lutjanus | Lutjanus sp. | 0.12 | |
| Lutjanus ehrenbergii | 0.72 | |||
| Gobiiformes | Gobiidae | Periophthalmodon | Periophthalmodon schlosseri | 0.12 |
| Gonorynchiformes | Chanidae | Channos | Channos channos | 0.12 |
| Mugiliformes | Mugilidae | Crenimugil | Crenimugil buchanani | 8.82 |
| Crenimugil | Crenimugil seheli | 4.11 | ||
| Ellochelon | Ellochelon vaigiensis | 10.14 | ||
| Mugil | Mugil cephalus | 1.93 | ||
| Planiliza | Planiliza planiceps | 2.66 | ||
| Planiliza subviridis | 0.12 | |||
| Mulliformes | Mullidae | Upeneus | Upeneus sulphureus | 0.36 |
| Ovalentaria | Ambassidae | Ambassis | Ambassis vachellii | 1.09 |
| Ambassis gymnocephalus | 1.93 | |||
| Ambassis nalua | 6.64 | |||
| Pleuronectiformes | Cynoglossidae | Cynoglossus | Cynoglossus lingua | 0.12 |
| Scombriformes | Scombridae | Rastrelliger | Rastrelliger kanagurta | 1.81 |
| Synbranchiformes | Synbranchidae | Monopterus | Monopterus albus | 0.24 |
| Tetraodontiformes | Tetraodontidae | Lagochepalus | Lagochepalus inermis | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
