Topography plays a crucial role in shaping local urban microclimates and can drive the formation of cold-air pools in valley bottoms. This study examines the Eiras Valley (Coimbra, Portugal), a rapidly growing peri-urban area, to identify the conditions under which cold-air pools form and to characterize their spatial and vertical dynamics. Field measurements were carried out using Tinytag Plus 2 data loggers at the surface (≈1.5 m above ground) and mounted on an unmanned aerial vehicle (UAV) for vertical profiles, complemented by high-resolution thermal mapping through Empirical Bayesian Kriging. The results show that a nocturnal cold-air pool develops within the valley under clear, anticyclonic winter conditions, persisting into the early morning hours and dissipating after sunrise due to solar heating. In contrast, under overcast or summer conditions, no cold-air pooling was observed. The temperature inversion capping the cold-air pool was found at approximately 275 m altitude, inhibiting vertical mixing and trapping pollutants near the ground. These findings underscore the importance of topoclimatology in urban and regional planning, with implications for thermal comfort, air quality, and public health. The study contributes to urban climate research by highlighting how local topography and seasonal atmospheric stability govern cold-air pool formation in valley environments, supporting the development of mitigation strategies aligned with urban sustainability goals.