Neospora caninum, the causative agent of abortion in cattle, has a major economic impact worldwide. This review aims to provide an overview of key advances of the last 5-8 years in understanding host-pathogen interactions, molecular mechanisms, and emerging control strategies. Epidemiological studies have revealed the influence of environmental, genetic, and ecological factors on parasite transmission dynamics, and emphasized the importance of integrated "One Health" strategies. Characteristics of different Neospora strains have been elucidated through animal models and molecular tools such as clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9)-based gene editing, high-throughput sequencing and advanced proteomics, aiming to shed light on stage-specific gene regulation and virulence factors, contributing to the development of interventions against neosporosis. Insights into immune modulation, immune evasion and parasite persistence contributed to the efforts towards vaccine development. In terms of therapeutics, repurposed drugs but also more targeted inhibitors have shown promising efficacy in reducing parasite burden and mitigating vertical transmission in laboratory models. Here, more recent innovations in nanoparticle-based drug delivery systems and immunomodulatory strategies are prone to enhance therapeutic outcomes. However, a significant challenge remains the integration of molecular and immunological insights into practical applications.