Submitted:
05 January 2026
Posted:
08 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. What Is Quantum Entanglement?
3. Pure-State Entanglement Distance
3.1. Properties of Entanglement Distance
- i
- , and if and only if is fully separable;
- ii
- E is invariant under LU transformation;
- iii
- E doesn’t increase under local operation and classical communications (LOCC);
- iv
- E is additive for tensor products.
- i
- From (22) it follows that , since . Therefore, implies for each . The reduced density matrix of the -th subsystem, , obtained by tracing over the degrees of freedom of the remaining subsystems, can be written as . Hence, implies . Since , it follows that for each . This condition is satisfied if and only if the state is fully separable.
- ii
- For a given LU operator U, which has the form with a unitary operator acting on the -th party, one finds that . This proves the statement.
- iii
-
Let us suppose that a local measurement is performed on a single qubit ; without loss of generality, we may take . If denotes the normalized state vector before the measurement, then denotes the normalized state vector after the measurement, corresponding to the outcome for the qubit along the direction . We denote the corresponding eigenstate of the measured qubit by . The associated outcome probability is . The post-measurement state vector is given byIt resultsThe reduced density matrix of the -th qubit is given byFor , one obtainsTherefore, from (22) we findThe two-qubit reduced density matrix of the 0-th and the -th qubits, with , is given byBy direct calculation, one can verify thatthis proves that, for ,This completes the proof of Claim 3.
- iv
-
In the case of a state product of two states , the metric tensor can be set as diagonal blocksand one hasThe generalization to multiple tensor products follows straightforwardly.
3.2. Comparison Between the Concurrence and the Entanglement Distance
3.3. Comparison Between the Entanglement Entropy and the Entanglement Distance
4. Concluding Remarks
Acknowledgments
References
- Gühne, O.; Toth, G. Entanglement detection. Physics Reports 2009, 474, 1–75. [Google Scholar] [CrossRef]
- Nourmandipour, A.; Vafafard, A.; Mortezapour, A.; Franzosi, R. Entanglement protection of classically driven qubits in a lossy cavity. Scientific Reports 2021, 11, 16259. [Google Scholar] [CrossRef]
- Vafafard, A.; Nourmandipour, A.; Franzosi, R. Multipartite stationary entanglement generation in the presence of dipole-dipole interaction in an optical cavity. Phys. Rev. A 2022, 105, 052439. [Google Scholar] [CrossRef]
- Sperling, J.; Walmsley, I.A. Entanglement in macroscopic systems. Phys. Rev. A 2017, 95, 062116. [Google Scholar] [CrossRef]
- Giovannetti, V.; Mancini, S.; Vitali, D.; Tombesi, P. Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A 2003, 67, 022320. [Google Scholar] [CrossRef]
- Vesperini, A.; Bel-Hadj-Aissa, G.; Franzosi, R. Entanglement and quantum correlation measures for quantum multipartite mixed states. Scientific Reports 2023, 13, 2852. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Thermodynamics and the measure of entanglement. Phys. Rev. A 1997, 56, R3319–R3321. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824–3851. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 1996, 76, 722–725. [Google Scholar] [CrossRef]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? Phys. Rev. Lett. 1998, 80, 5239–5242. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B.; Rippin, M.A.; Knight, P.L. Quantifying Entanglement. Phys. Rev. Lett. 1997, 78, 2275–2279. [Google Scholar] [CrossRef]
- Adesso, G.; Bromley, T.R.; Cianciaruso, M. Measures and applications of quantum correlations. Journal of Physics A: Mathematical and Theoretical 2016, 49, 473001. [Google Scholar] [CrossRef]
- Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 2000, 62, 062314. [Google Scholar] [CrossRef]
- Briegel, H.J.; Raussendorf, R. Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 2001, 86, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Eisert, J.; Briegel, H.J. Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 2001, 64, 022306. [Google Scholar] [CrossRef]
- Roszak, K. Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res. 2020, 2, 043062. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef]
- Carvalho, A.R.R.; Mintert, F.; Buchleitner, A. Decoherence and Multipartite Entanglement. Phys. Rev. Lett. 2004, 93, 230501. [Google Scholar] [CrossRef]
- Vesperini, A.; Franzosi, R. Entanglement, Quantum Correlators, and Connectivity in Graph States. Advanced Quantum Technologies 2024, 7, 2300264. [Google Scholar] [CrossRef]
- De Simone, L.; Franzosi, R. Entanglement in directed graph states. Journal of Physics A Mathematical General 2025, 58, 415302. [Google Scholar] [CrossRef]
- De Simone, L.; Franzosi, R. Entanglement in Quantum Systems Based on Directed Graphs. Advanced Quantum Technologies 2025, e00514. [Google Scholar] [CrossRef]
- Gnatenko, K.P.; Susulovska, N.A. Geometric measure of entanglement of multi-qubit graph states and its detection on a quantum computer. Europhysics Letters 2022, 136, 40003. [Google Scholar] [CrossRef]
- Gnatenko, K.; Laba, H.; Tkachuk, V. Geometric properties of evolutionary graph states and their detection on a quantum computer. Physics Letters A 2022, 452, 128434. [Google Scholar] [CrossRef]
- Gnatenko, K.P. Evaluation of variational quantum states entanglement on a quantum computer by the mean value of spin. arXiv 2023, arXiv:2301.03885. [Google Scholar] [CrossRef]
- Gnatenko, K. Entanglement of multi-qubit states representing directed networks and its detection with quantum computing. Physics Letters A 2024, 521, 129815. [Google Scholar] [CrossRef]
- Gnatenko, K.P. Studies of properties of bipartite graphs with quantum programming. Physics Letters A 2026, 566, 131191. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef]
- Frydryszak, A.M.; Samar, M.I.; Tkachuk, V.M. Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. The European Physical Journal D 2017, 71, 233. [Google Scholar] [CrossRef]
- Pezzé, L.; Smerzi, A. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Phys. Rev. Lett. 2009, 102, 100401. [Google Scholar] [CrossRef]
- Hyllus, P.; Laskowski, W.; Krischek, R.; Schwemmer, C.; Wieczorek, W.; Weinfurter, H.; Pezzé, L.; Smerzi, A. Fisher information and multiparticle entanglement. Phys. Rev. A 2012, 85, 022321. [Google Scholar] [CrossRef]
- Scali, S.; Franzosi, R. Entanglement estimation in non-optimal qubit states. Annals of Physics 2019, 411, 167995. [Google Scholar] [CrossRef]
- Provost, J.P.; Vallee, G. Riemannian structure on manifolds of quantum states. Communications in Mathematical Physics 1980, 76, 289–301. [Google Scholar] [CrossRef]
- Gibbons, G. Typical states and density matrices. Journal of Geometry and Physics 1992, 8, 147–162. [Google Scholar] [CrossRef]
- Brody, D.C.; Hughston, L.P. Geometric quantum mechanics. Journal of Geometry and Physics 2001, 38, 19–53. [Google Scholar] [CrossRef]
- Cocchiarella, D.; Scali, S.; Ribisi, S.; Nardi, B.; Bel-Hadj-Aissa, G.; Franzosi, R. Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A 2020, 101, 042129. [Google Scholar] [CrossRef]
- Vesperini, A.; Bel-Hadj-Aissa, G.; Capra, L.; Franzosi, R. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems. Frontiers of Physics 2024, 19, 51204. [Google Scholar] [CrossRef]
- Vesperini, A. Correlations and projective measurements in maximally entangled multipartite states. Annals of Physics 2023, 169406. [Google Scholar] [CrossRef]
- Vidal, G. Entanglement monotones. Journal of Modern Optics 2000, 47, 355–376. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation and Concurrence. Quantum Info. Comput. 2001, 1, 27–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
