Preprint
Article

This version is not peer-reviewed.

Assigning Spare Parts Management Decision-Making Strategies: A Holistic Portfolio Classification Methodology

Submitted:

05 January 2026

Posted:

05 January 2026

You are already at the latest version

Abstract

Maintenance organizations face growing volumes of spare parts, requiring robust classification methodologies to support decision-making. Practitioners continue reliance on simple and single-criterion-specialized methodologies, while research advances toward criteria and threshold specialized classification optimization for operationally visible spare parts or predefined classes revealing criteria dependencies and data completeness requirements. The literature review identifies a gap showing that existing classification methodologies lack inclusion of all spare parts with maintainable asset relevance, consequently excluding, under-prioritizing, or misclassifying essential spare parts leading to the wrong forecasts and inventory policies. Applying design science research, this study develops a holistic spare parts portfolio classification methodology that increases spare parts inclusion and enables class-based decision-making strategy development to address the gap. The methodology classifies spare parts based on their absence and presence across equipment bill of materials, maintenance history, inventory, and inventory policies, enabling identification and inclusion of operationally invisible spare parts. A case study of 32,521 spare parts demonstrates the interventional effects of the methodology. The intervention improved decision-making efficiency by 91%, increased decision throughput ninefold, and transformed a non-transparent decision-making approach with 9% scope completion and 1.7% stock value increase into a transparent strategy-based approach yielding full scope completion and 33.6% scope stock value reduction.

Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated