Preprint
Article

This version is not peer-reviewed.

Tessellated Temporal Flux: Resolving Kakeya Protrusions Through Gyrobifastigium Multi-Tilings

Submitted:

04 January 2026

Posted:

06 January 2026

You are already at the latest version

Abstract
In this paper we demonstrate that the transition from a stable Dodecahedral Core (Valamontes, 2024) to the "Wild" chaotic phase corresponds physically to the "Elongated Phase" of 4-D simplicial quantum gravity (Gionti, 1997). This phase is characterized by the emergence of Besicovitch (Kakeya) needle sets—fractal structures that achieve maximal directional complexity within minimal volumetric measure. We introduce the Gyrobifastigium as the fundamental space-filling unit capable of mediating the geometric friction between the periodic dodecahedral vacuum and the aperiodic Einstein Monotile global structure. Finally, we map this geometric resolution onto a 3D temporal framework ($\tau$-space), where the "Big Bang" is redefined as a retrocausal pruning process of a "Nine-Tile" super-compatible state, effectively solving the universal NP-hard tiling problem of the vacuum through informational synchronization.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated