Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Description and Study Context
2.2. Experimental Design and Control Comparison
2.3. Measurement Procedures and Quality Control
2.4. Data Processing and Model Formulation
2.5. Simulation Environment and Parameter Calibration
3. Results and Discussion
3.1. Overall Performance of the Adaptive Workflow
3.2. Timeliness and Coverage of High-Risk Alerts
3.3. Effects of Human-Factor Indicators and Workload Feedback
3.4. Comparison with Existing AML Approaches and Practical Implications
4. Conclusion
References
- Global Anti-money Laundering Regulation: Developing Countries Compliance Challenges; Azinge-Egbiri, N., Ryder, N., Esoimeme, E. E., Eds.; Taylor & Francis, 2024. [Google Scholar]
- Oguntoyinbo, M. Mitigating the risk as SOC alert analyst and incident responder. 2025. [Google Scholar]
- Rajpoot, M. H.; Raffat, M. W. The AI-Driven Compliance and Detection in Anti-Money Laundering: Addressing Global Regulatory Challenges and Emerging Threats: AI-Driven AML: Compliance Threat Detection. Journal of Computational Science and Applications (JCSA), ISSN: 3079-0867 (Onilne) 2024, 1(2). [Google Scholar] [CrossRef]
- Hu, Z.; Hu, Y.; Li, H. Multi-Task Temporal Fusion Transformer for Joint Sales and Inventory Forecasting in Amazon E-Commerce Supply Chain. arXiv 2025, arXiv:2512.00370. [Google Scholar]
- Karim, M. R.; Hermsen, F.; Chala, S. A.; De Perthuis, P.; Mandal, A. Scalable semi-supervised graph learning techniques for anti money laundering. IEEE Access 2024, 12, 50012–50029. [Google Scholar] [CrossRef]
- Tiamiyu, O. R. Unveiling Hidden Money Laundering Networks: The Application of Graph Neural Networks in Financial Transaction Analysis. Journal of Computational Analysis and Applications 2025, 34(9), 50–74. [Google Scholar]
- Gu, X.; Yang, J.; Tian, X.; Liu, M. Research on the Construction of a Human-Machine Collaborative Anti-Money Laundering System and Its Efficiency and Accuracy Enhancement in Suspicious Transaction Identification. 2025. [Google Scholar]
- Kute, D. V.; Pradhan, B.; Shukla, N.; Alamri, A. Deep learning and explainable artificial intelligence techniques applied for detecting money laundering–a critical review. IEEE access 2021, 9, 82300–82317. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, M.; Corona, E. A.; Daniel, B.; Leuze, C.; Baik, F. VR MRI Training for Adolescents: A Comparative Study of Gamified VR, Passive VR, 360 Video, and Traditional Educational Video. arXiv 2025, arXiv:2504.09955. [Google Scholar] [CrossRef]
- Loh, X. Suspicious activity reports (SARs) regime: reforming institutional culture. Journal of money laundering control 2021, 24(3), 514–524. [Google Scholar] [CrossRef]
- Zhu, W.; Yao, Y.; Yang, J. Real-Time Risk Control Effects of Digital Compliance Dashboards: An Empirical Study Across Multiple Enterprises Using Process Mining, Anomaly Detection, and Interrupt Time Series. 2025. [Google Scholar] [CrossRef]
- Etuk, E. A.; Omankwu, O. C. B. Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors. Communication In Physical Sciences 2025, 12(2), 426–433. [Google Scholar]
- Li, T.; Jiang, Y.; Hong, E.; Liu, S. Organizational Development in High-Growth Biopharmaceutical Companies: A Data-Driven Approach to Talent Pipeline and Competency Modeling. 2025. [Google Scholar]
- Lanham, M. J.; Morgan, G. P.; Carley, K. M. Social network modeling and agent-based simulation in support of crisis de-escalation. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2013, 44(1), 103–110. [Google Scholar] [CrossRef]
- Sheu, J. B.; Gao, X. Q. Alliance or no alliance—Bargaining power in competing reverse supply chains. European Journal of Operational Research 2014, 233(2), 313–325. [Google Scholar] [CrossRef]
- Bello, O. A.; Folorunso, A.; Onwuchekwa, J.; Ejiofor, O. E.; Budale, F. Z.; Egwuonwu, M. N. Analysing the impact of advanced analytics on fraud detection: a machine learning perspective. European Journal of Computer Science and Information Technology 2023, 11(6), 103–126. [Google Scholar]
- Bai, W. Phishing website detection based on machine learning algorithm. 2020 International Conference on Computing and Data Science (CDS), 2020, August; ieee; pp. 293–298. [Google Scholar]
- Jensen, R. I. T.; Ferwerda, J.; Jørgensen, K. S.; Jensen, E. R.; Borg, M.; Krogh, M. P.; Iosifidis, A. A synthetic data set to benchmark anti-money laundering methods. Scientific data 2023, 10(1), 661. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yao, Y.; Yang, J. Optimizing Financial Risk Control for Multinational Projects: A Joint Framework Based on CVaR-Robust Optimization and Panel Quantile Regression. 2025. [Google Scholar]
- Oñate, G.; Garrido, A.; Arnan, M.; Pomares, H.; Alonso, E.; Tormo, M.; Sierra, J. Diverse real-life outcomes after intensive risk-adapted therapy for 1034 AML patients from the CETLAM Group. Blood cancer journal 2025, 15(1), 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, Y. Research on Credit Risk Forecasting and Stress Testing for Consumer Finance Portfolios Based on Macroeconomic Scenarios. 2025. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).