Submitted:
31 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Challenges Associated with Chemical Fertilizers

3. Nano-Scale Fertilizers and Their Formulation
3.1. IFFCO Nano Urea
3.2. IFFCO Nano Urea Plus
3.3. IFFCO Nano DAP
3.4. IFFCO Nano Copper and Nano Zinc
4. Nanotechnology-Based Approaches to Increase Crop Production

| Crop name | Type of NFs | Crop response | References |
| Rice | Nano DAP fertilizer | Increased plant growth, grain yield, and nutrient use efficiency in rice | [45] |
| Wheat, Pearl millet, Sesame, Mustard | Nano urea and nano zinc fertilizer | Enhanced growth, yield-attributing traits and crop yield | [50] |
| Maize | Hydroxyapatite NPs | Increased plant height and yield | [61] |
| Wheat, Tomato | Cryo-milled nano DAP | Increased shoot length, fresh weight, shoot surface area, Improved biomass, pronounced Pi content and reduced anthocyanin content | [62] |
| Radish | Hydroxyapatite nanoparticles | Shoot/root elongation, enhanced dry biomass, soluble protein and indole acetic acid content | [57] |
| Maize | Sulfate-supplemented NPK nano fertilizer | Increased number of leaves, plant height, nutrient content and uptake | [53] |
| Okra | Cu, Fe, and Zn incorporated urea-hydroxyapatite NPs | Increased nutrient use efficiency and higher yields | [63] |
| Maize | Hydroxyapatite-humic acid NPs | Increased plant height, fresh and dry weights | [64] |
| Soybean | Nano-hydroxyapatite | Increased plant height and production | [65] |
| Soybean | NPK nano fertilizers | Increased yield and nutritional properties | [52] |
| Rice | Nano phosphorus fertilizer | Greater physiological efficiency of shoots and roots for P, higher photosynthetic rate and instant water use efficiency | [58] |
| Coffee | NPK-coated nano fertilizer | Increased nutrient uptake, plant growth, number of leaves, and photosynthetic plant area | [66] |
| Maize, Capsicum, Kale | NPK nano-fertilizers | Higher grain yield, fruit numbers, and increased dry matter yield | [67] |
| Maize | Zn-chitosan NPs | Increased plant growth, crop yield, and grain zinc content | [19] |
| Soybean | Thymol nano-emulsion | Enhanced plant growth and disease control | [60] |
| Peanut | Nano-zeolite-P fertilizer | Higher nutrient, oil content and increased P use efficiency | [56] |
| Lettuce | Nano hydroxyapatite | Increased dry weight and P use efficiency | [68] |
| Almond |
Nano urea modified with hydroxyapatite | Increased seed germination rate, plant height, perimeter, seed moisture status, and elongation of primary and secondary roots | [18] |
| Pea | Chitosan–PMAA–NPK nano fertilizer | Upregulation of major proteins such as convicilin, vicilin, and legumin β and induced rate of cell division | [69] |
| Maize | Cu-chitosan NPs | Increased plant growth, boosts defense response and crop yield | [22] |
| Wheat | Zinc-complexed chitosan/TPP NPs | Increased grain zinc content | [21] |
| Rice | Urea-hydroxyapatite NPs | Increased NPK content | [51] |
| Pomegranate | Nano-nitrogen | Enhanced leaf N content, fruit yield, and quality | [70] |
| Wheat | Nano chitosan NPK | Increased shoot/ root length, fresh/dry weight, water content, and leaf area | [24] |
| Potato | Nano N chelate | Increased yield and reduced nitrate leaching | [71] |
| Soybean | Apatite NPs | Increased growth rate, seed yield and biomass production | [54] |
| Wheat | N, P and NPK NPs | Enhancement of plant growth parameters such as shoot length, root length and others | [72] |
| Cowpea | Silver NPs | Microbial growth inhibition of Xanthomonas axonopodis pv. malvacearum and other harmful bacteria | [73] |
| Green pea | Zinc oxide NPs | Increased zinc uptake and photosynthetic pigment | [74] |
| Sunflower | Zinc oxide NPs | Increased Zn content and plant growth and physiological parameters like leaf area, shoot dry weight, and chlorophyll content | [75] |
| Capsicum | Zinc oxide NPs | Enhanced root/shot length, seed germination, and seedling growth | [76] |
| Maize | Zinc NPs | Increased plant growth, yield attributes and crop yield | [77] |
5. Nano Fertilizer for Crop Sustainability
6. Genetic Engineering-Based Approaches to Increase Crop Production
7. Nutrient-Solubilizing Microbe-Based Approaches
8. Biological Mechanism of Action
9. Potential Risks and Biosafety Concerns
10. Conclusion and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Mittal D, Kaur G, Singh P, Yadav K and Ali SA (2020) Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2:579954. [CrossRef]
- John DA and Babu GR (2021). Lessons From the Aftermaths of Green Revolution on Food System and Health. Front. Sustain. Food Syst. 5:644559. [CrossRef]
- Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact. 2022 Jul; 27:100411. Epub 2022 Jul 6. [CrossRef] [PubMed]
- Verma, K.K., Song, X.P., Joshi, A., Tian, D.D., Rajput, V.D., Singh, M., Arora, J., Minkina, T. and Li, Y.R. 2022. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials, 12(1), 173. [CrossRef]
- Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H. ur, Ashraf, I., Sanaullah, M., 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci. Total Environ. 721, 137778. [CrossRef]
- FAO, 2009. How to Feed the World in 2050. UN-FAO, Rome, Italy.
- Kah, M., Kookana, R.S., Gogos, A., Bucheli, T.D., 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684. [CrossRef] [PubMed]
- Wang, J and Azam W. 2024. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers 15: 101757. [CrossRef]
- Tan, Z. X., R. Lal, and K. D. Wiebe. 2005. Global soil nutrient depletion and yield reduction. Journal of Sustainable Agriculture 26 (1):123–46. [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [CrossRef]
- Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023 Jan 9;28(2):661. [CrossRef] [PubMed] [PubMed Central]
- Yadav, Neelam & Garg, V.K. & Chhillar, Anil & Rana, Jogender. (2023a). Recent advances in nanotechnology for the improvement of conventional agricultural systems: A Review. Plant Nano Biology. 4. 100032. [CrossRef]
- Kumaraswamy R.V., Kumari S., Choudhary, R.C., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2018. Engineered chitosan-based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113, 494–506. [CrossRef]
- Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023 Apr 17;14:1155622. [CrossRef] [PubMed] [PubMed Central]
- Haydar, M.S., Ghosh, D., and Roy, S. 2024. Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: Recent understanding and concerns, Plant Nano Biology, Volume 7: 100058. [CrossRef]
- Kalia, Anu & Kaur, Harleen. (2019). Nanofertilizers: An Innovation towards New Generation Fertilizers for Improved Nutrient-Use Efficacy and Environmental Sustainability. NanoAgroceuticals & NanoPhytoChemicals (pp.45-61), CRC Press Taylor & Francis Group, Boca Raton, FL.
- Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., et al. (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agricul. Food. Chem. 64, 6148–6155. [CrossRef] [PubMed]
- Badran, Antar & Savin, I.. (2018). Effect of Nano-Fertilizer on Seed Germination and First Stages of Bitter Almond Seedlings’ Growth Under Saline Conditions. BioNanoScience. 8. 1-10. [CrossRef]
- Choudhary, R.C., Kumaraswamy, R.V., Kumari, S., Sharma, S.S., Pal, A., Raliya, R., Biswas, P., Saharan, V., 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int. J. Biol. Macromol. 127, 126–135. [CrossRef]
- Elemike, E., Uzoh, I., Onwudiwe, D., Babalola, O. (2019). The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Appl. Sci. 9, 499. [CrossRef]
- Deshpande, P., Dapkekar, A., Oak, M.D., Paknikar, K.M. and Rajwade, J.M. 2017. Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymer, 165, 394-401. [CrossRef] [PubMed]
- Choudhary, R.C., Kumaraswamy R.V., Kumari S., Sharma, S.S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2017. Cu-chitosan nanoparticle boosts defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7, 9754. [CrossRef]
- Ashraf, Umair & Ghaffar, Rabia & Sher, Alam & Mahmood, Sammina & Noreen, Zahra & Maqbool, Muhammad & Saddique, Maham & Ashraf, Abrar. (2022). Impact of nano chitosan-NPK fertilizer on field crops. [CrossRef]
- Abdel-Aziz, H.M.M., Hasaneen, M.N.A. and Aya, M.O. 2018. Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. The Egyptian Journal of Experimental Biology, 14(1), 63-72.
- Nanofertilizer trial results. IFFCO (cited 2025 Nov 14). https://www.iffco.in/en/nano-fertilisers.
- ThePrint. IFFCO receives FCO approval for nano zinc liquid, nano copper liquid fertilisers (cited 2025 Nov 14). https://theprint.in/economy/iffco-receives-fco-approval-for-nano-zinc-liquid-nano-copper-liquid-fertilisers/2065630/.
- Kofoya, C.M., Esilfie, M.E., Asiedu, E.K., Osei, B., Amponsah, K., Atakora, W., KumahAmenudzi, D., Nongorh, C.O., and Nartey, G. (2025) Influence of NPK (Granule and Briquette) + Urea Fertilizers on Selected Soil Properties, Growth and Yield of Maize (Zea Mays L.). Open Access Library Journal, 12: e14168. [CrossRef]
- FAO, 2017. World fertilizer trends and outlook to 2020. UN-FAO, Rome, Italy.
- Ali, W., Nadeem, M., Ashiq, W., Zaeem, M., Gilani, S.S.M., Rajabi-Khamseh, S., Pham, T.H., Kavanagh, V., Thomas, R. and Cheema, M. 2019. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Scientific Reports, 9, 17297. [CrossRef]
- Gheysari, M., Mirlatifi, S.M., Homaee, M., Asadi, M.E. and Hoogenboom, G. 2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural Water Management, 96, 946-954. [CrossRef]
- Bindraban, P.S., Dimkpa, C.O. and Pandey, R. 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56, 299-317. [CrossRef]
- Childers, D.L., Corman, J., Edwards, M. and Elser, J.J. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience, 61, 117-124. [CrossRef]
- Wilkinson, P., Smith, K.R., Joffe, M. and Haines, A. 2007. A global perspective on energy: health effect sand injustices. Lancet, 370, 965-978. [CrossRef] [PubMed]
- Ren N, Wang Y, Ye Y, Zhao Y, Huang Y, Fu W, Chu X. Effects of Continuous Nitrogen Fertilizer Application on the Diversity and Composition of Rhizosphere Soil Bacteria. Front Microbiol. 2020 Aug 21;11:1948. [CrossRef] [PubMed] [PubMed Central]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaite, D.; Barˇcauskaite, K. Review: Modified ˙ Urea Fertilizers and Their Effects on Improving Nitrogen Use Efficiency (NUE). Sustainability 2024, 16, 188. [CrossRef]
- Zhang, H., Liu, H., Zhao, J., Wang, L., Li, G., Huangfu, C., Wang, H., Lai, X., Li, J. and Yang, D. 2017. Elevated precipitation modifies the relationship between plant diversity and soil bacterial diversity under nitrogen deposition in Stipa baicalensis steppe. Applied Soil Ecology, 119(31), 345-353. [CrossRef]
- Prasad, R., Bhattacharyya, A. and Nguyen, Q.D. 2017. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014. [CrossRef]
- Kashyap, P.L., Xiang, X. and Heiden. P. 2015. Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36-51. [CrossRef]
- Shakiba, S., Astete, C. E., Paudel, S., Sabliov, C. M., Rodrigues, D. F., and Louie, S. M. (2020). Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7, 37–67. [CrossRef]
- A. Gade, P. Ingle, U. Nimbalkar, M. Rai, R. Raut, M. Vedpathak, P. Jagtap, K.A. Abd-Elsalam. Nanofertilizers: the next generation of agrochemicals for long-term impact on sustainability in farming systems. Agrochemicals, 2 (2) (2023), pp. 257-278. [CrossRef]
- D. Garg, K. Sridhar, B. Stephen Inbaraj, P. Chawla, M. Tripathi, M. Sharma. Nano-biofertilizer formulations for agriculture: a systematic review on recent advances and prospective applications. Bioengineering, 10 (9) (2023), p. 1010. [CrossRef]
- Kumar, Y., Tiwari, K.N., Singh, T and Raliya R. (2021). Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research 23(3): 238-255. [CrossRef]
- Subramani, T. & Velmurugan, A Velmurugan & Narayanasamy, Bommayasamy & T.P., Swarnam & Ramakrishna, Y. & Jaisankar, I. & Singh, Lakhan. (2023). Effect of Nano Urea on growth, yield and nutrient use efficiency of Okra under tropical island ecosystem. INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES. 19. 134-139. [CrossRef]
- IFFCO - NETWORK PROJECT: PROGRESS REPORT: JUNE 2024. Insights & Field Validation of Nano Fertilizers in Major Crops Under Different Agro Ecosystems. India, 2024, pp 1-10.
- Sahoo BR, Dash AK, Mohapatra KK, Mohanty S, Sahu SG, Sahoo BR, Prusty M and Priyadarshini E (2024) Strategic management of nanofertilizers for sustainable rice yield, grain quality, and soil health. Front. Environ. Sci. 12:1420505. [CrossRef]
- Mane, M.S. Product testing report of ‘Response of suru Sugarcane to Nano N, Cu and Zn in Inceptisols (2020-21). MPKV, Rahuri, India, p.p 1-19.
- Jadav N.J. and Parmar, J.K. Other agency report on ‘Effect of nanofertilizers on growth and yield of maize and soil properties (2019-20 and 2020-21). AAU Anand, India, p.p 1-18.
- Yadav, A., Yadav, K., Abd-Elsalam, K.A. (2023b). Exploring the potential of nanofertilizers for a sustainable agriculture. Plant Nano Biology, 5, 100044. [CrossRef]
- Avila-Quezada, Graciela Dolores, Ingle, Avinash P., Golińska, Patrycja and Rai, Mahendra. "Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks" Nanotechnology Reviews, vol. 11, no. 1, 2022, pp. 2123-2140. [CrossRef]
- Kumar, A., Singh, K., Verma, P., Singh, O., Panwar, A., Singh, T., Kumar, Y. and Raliya, R. 2022. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Scientific Reports, 12, 6938. [CrossRef] [PubMed]
- Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake. U.A., Berugoda, Arachchige, D.M., Kumarasinghe, A.R., Dahanayake, D., Karunaratne, V. and Amaratunga, G.A. 2017. Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen. ACS Nano, 11(2), 1214-1221. [CrossRef]
- Sarah, A.E.S., Algarni, A.A. and Shaban, K.A.H. 2020. Effect of NPK Nano-fertilizers and Compost on Soil Fertility and Root Rot Severity of Soybean Plants Caused by Rhizoctonia solani. Plant Pathology Journal, 19(2), 140-150. [CrossRef]
- Dhlamini, B., Paumo, H.K., Katata-Seru, L. and Kutu, F.R. 2020. Sulphate-supplemented NPK nanofertilizer and its effect on maize growth. Materials Research Express, 7(9), 095011. [CrossRef]
- Liu. R. and Lal, R. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4, 5686. [CrossRef] [PubMed]
- Dwivedi, S., Saquib, Q., Al-Khedhairy, A.A. and Musarrat J. 2016. Understanding the role of nanomaterials in agriculture. In: Singh D.P., Singh H.B., Prabha R., editors. Microbial Inoculants in Sustainable Agricultural Productivity. Springer; New Delhi, India.
- Hagab, R.H., Kotp, Y.S. and Eissa, D. 2018. Using nanotechnology for enhancing phosphorus fertilizer use efficiency in peanut bean grown in sandy soils. Journal of Advanced Pharmacy Education and Research, 8(3), 59-67.
- Madanayake, N.H., Adassooriya, N.M. and Salim N. 2021. The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environmental Nanotechnology, Monitoring and Management, 15, 100404. [CrossRef]
- Miranda-Villagomez, E., Trejo-Tellez, L.I., Gomez-Merino, F.C., Sandoval-Villa, M., Sanchez Garcia, P. and Aguilar-Mendez, M.A. 2019. Nanophosphorus Fertilizer Stimulates Growth and Photosynthetic Activity and Improves P Status in Rice. Journal of Nanomaterials, 11, 5368027. [CrossRef]
- Sheoran, P., Goel, S., Boora, R., Kumari, S., Yashveer, S. and Grewal, S. 2021. Biogenic synthesis of potassium nanoparticles and their evaluation as a growth promoter in wheat. Plant Gene, 27, 1-8. [CrossRef]
- Kumari, S., Kumaraswamy, R.V., Choudhary, R.C., Sharma, S.S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2018. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific Reports, 8, 6650. [CrossRef]
- Sajadinia, H., Ghazanfari, D., Naghavii, K., Naghavi, H. and Tahamipur, B. 2021. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon, 7, e06094. [CrossRef]
- Singh, N.R.R., Sarma, S.S., Rao, T.N., Pant, H., Srikanth, V.V.S.S. and Kumar, R. 2021. Cryo-milled nano-DAP for enhanced growth of monocot and dicot plants. Nanoscale Advances, 3(16), 4834-4842. [CrossRef]
- Tarafder, C., Daizy, M., Alam, M.M., Ali, M.R., Islam, M.J., Islam, R., Ahommed, M.S., Aly, M.A.S. and Khan, M.Z.H. 2020. Formulation of a Hybrid Nanofertilizer for Slow and Sustainable Release of Micronutrients. ACS Omega, 5, 23960-23966. [CrossRef]
- Yoon, H.Y., Lee, J.G., Esposti, L.D., Iafisco, M., Kim, P.J., Shin, S.G., Jeon, J.R. and Adamiano, A. 2020. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega 5, 6598-6610. [CrossRef] [PubMed]
- McKnight, M.M., Qu, Z., Copeland, J.K., Guttman, D.S. and Walker, V.K. 2020. A practical assessment of nano-phosphates on soybean (Glycine max) growth and microbiome stablishment. Scientific Reports, 10(1), 1-17. [CrossRef]
- Ha, N.M.C., Nguyen, T.H., Wang, S.L. and Nguyen, A.D. 2018. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates, 45 (1), 51–63. [CrossRef]
- Rop, K., Karuku, G.N., Mbui, D. and Njomo, N. and Michira, I. 2019. Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Sciences, 64(1), 9-19. [CrossRef]
- Taskına, M.B., Sahin¸ O., Taskina, H., Atakolb, O., Inala, A. and Gunes. A. 2018. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. Journal of Plant Nutrition, . [CrossRef]
- Khalifa, N.S. and Hasaneen, M.N. 2018. The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech, 8(4), 193. [CrossRef]
- Davarpanah, S., Tehranifar, A., Davarynejad, G., Aran, M., Abadía, J. and Khorassani, R. 2017. Effects of foliar nano-nitrogen and urea fertilizers on the physical and chemical properties of pomegranate Punica granatum cv. Ardestani fruits. Horticultural Science, 52(2), 288-294. [CrossRef]
- Zareabyaneh, H. and Bayatvarkeshi, M. 2015. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environmental Earth Sciences, 74, 3385-3393. [CrossRef]
- Al-Juthery H.W., Al-Fadhly J.T., Ali E.A.H.M., Al-Taee R.A.H.G. Role of some nanofertilizers and atonikin maximizing for production of hydroponically-grown barley fodder. Int. J. Agric. Stat. Sci. 2019;15:565–570.
- Vanti G.L., Nargund V.B., N B.K., Vanarchi R., Kurjogi M., Mulla S.I., Tubaki S., Patil R.R. Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl. Organomet. Chem. 2018;33:e4630. [CrossRef]
- Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study. Front Plant Sci. 2016 Jan 12;6:1242. [CrossRef]
- Torabian, S., Zahedi, M, & Khoshgoftar, A. H. (2016). Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. Journal of Plant Nutrition, 39(2), 172e180. [CrossRef]
- Afrayeem, S. M., & Chaurasia, A. K. (2017). Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). Journal of Pharmacognosy and Phytochemistry, 6(5), 1564e1566.
- Subbaiah LV, Prasad TN, Krishna TG, Sudhakar P, Reddy BR, Pradeep T. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.). J Agric Food Chem. 2016 May 18;64(19):3778-88. [CrossRef] [PubMed]
- Gehlot, P., Yadav, J., Chittora, D., Meena, S., Meena, P., and Jain, T. 2024. Biofertilizers, Bionanofertilizers and Nanofertilizers: Eco-friendly alternatives for crop production. J. Mycopathol. Res. 62(2): 241-259.
- Morrow, M.; Sharma, V.; Singh, R.K.; Watson, J.A.; Maltais-Landry, G.; Hochmuth, R.C. Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils. Agronomy 2025, 15, 455. [CrossRef]
- Díaz-Rodríguez, A.M.; Parra Cota, F.I.; Cira Chávez, L.A.; García Ortega, L.F.; Estrada Alvarado, M.I.; Santoyo, G.; de los Santos-Villalobos, S. Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants 2025, 14, 191. [CrossRef]
- Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML. Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants (Basel). 2020 Dec 22;10(1):2. [CrossRef] [PubMed] [PubMed Central]
- Goyal A, Chavan SS, Mohite RA, Shaikh IA, Chendake Y, Mohite DD. Emerging trends and perspectives on nano-fertilizers for sustainable agriculture. Discov Nano. 2025 Jun 20;20(1):97. [CrossRef] [PubMed] [PubMed Central]
- Syed, S.; Wang, X.; Prasad, T.N.V.K.V.; Lian, B. Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives. Minerals 2021, 11, 1336. [CrossRef]
- Basavarajappa, P.N., Shruthi, Lingappa, M., Kadalli, G.G. and Mahadevappa, S.G. 2021. Nutrient requirement and use efficiency of rice (Oryza sativa L.) as influenced by graded levels of customized fertilizer. Journal of Plant Nutrition, 44(19), 2897-2911. [CrossRef]
- Li, M., Xu, J., Gao, Z., Tian, H., Gao, Y. and Kariman, K. 2020. Genetically modified crops are superior in their nitrogen use efficiency- a meta-analysis of three major cereals. Scientific Reports, 10, 8568. [CrossRef]
- Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S.M. and Tuteja, N. 2016. The CRISPR/Cas genome-editing tool: application in improvement of crops. Frontiers in Plant Science, 7, 506. [CrossRef]
- Li, X., Wang, Y., Liu, Y., Yang, B., Wang, X., Wei, J., Lu, Z., Zhang, Y., Wu, J., Huang, X., Yang, L. and Chen J. 2018. Base editing with a Cpf1–cytidine deaminase fusion. Nature Biotechnology, 36, 324-327. [CrossRef]
- Shrawat, A.K., Carroll, R.T., DePauw, M., Taylor, G.J. and Good, A.G. 2008. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnology Journal, 6(7), 722-732. [CrossRef]
- Vance, C.P. 2010. Quantitative Trait Loci, Epigenetics, Sugars, and MicroRNAs: Quaternaries in Phosphate Acquisition and Use. Plant Physiology, 154(2), 582-588. [CrossRef]
- Zhou, J., Xie, J., Liao, H. and Wang, X. 2013. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiologia Plantarum, 150(2), 194-204. [CrossRef]
- Su, J., Xiao, Y., Li, M., Liu, Q., Li, B., Tong, Y., Jia, J. and Li, Z. 2006. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant and Soil, 281, 25-36. [CrossRef]
- Shin R. 2014. Strategies for improving potassium use efficiency in plants. Molecules and Cells, 37(8), 575-84. [CrossRef] [PubMed]
- Gamuyao, R., Chin, J.H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E.M., Wissuwa, M. and Heuer, S. 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488, 535-539. [CrossRef] [PubMed]
- Rosenblueth, M., Ormeno-Orrillo, E., Lopez-Lopez, A., Rogel, M.A., Reyes-Hernandez, B.J., Martinez-Romero, J.C., Reddy, P.M. and Martinez-Romero, E. 2018. Nitrogen Fixation in Cereals. Frontiers in Microbiology, 9:1794. [CrossRef]
- Amiri, A. and Rafiee, M. 2013. Effect of soil inoculation with Azospirillum and Azotobacter bacteria on nitrogen use efficiency and agronomic characteristics of corn. Annals of Biological Research, 4(2), 77-79.
- Garcia de Salamone, I.E., Funes, J.M., Di Salvo, L.P., Escobar-Ortega, J.S., D’Auria, F., Ferrando, L. and Fernandez-Scavino, A. 2012. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Applied Soil Ecology, 61, 196-204. [CrossRef]
- Majeed, A., Abbasi, M.K., Hameed, S., Imran, A. and Rahim, N. 2015. Isolation and characterization of Plant Growth-Promoting Rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 198. [CrossRef]
- Piccinin, G.G., Dan, L.G.M., Braccini, A.L.E., Mariano, D.C., Okumura, R.S., Bazo, G.L. and Ricci, T.T. 2011. Agronomic efficiency of Azospirillum brasilense in physiological parameters and yield components in wheat crop. Journal of Agronomy, 10, 132-135. [CrossRef]
- XiaoWang, H., Liu, S., Zhal, L., Zhang, J., Ren, T., Fan, B. and Liu, H. 2015. Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture, 14, 158-167. [CrossRef]
- Xiao, C.Q., Zhang, H.X., Fang, Y.J. and Chi, R. 2013. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Applied Microbiology and Biotechnology, 169, 123-133. [CrossRef]
- Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li, L. and Liang, J. 2019. Effects of Phosphate Solubilizing Bacteria on the Growth, Photosynthesis, and Nutrient Uptake of Camellia oleifera Abel. Forests, 10, 348. [CrossRef]
- Sheng, X.F. and He, L.Y. 2006. Solubilization of potassium bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52, 66-72. [CrossRef]
- Nguyen, G.N. and Kant, S. 2018. Improving nitrogen use efficiency in plants: effective phenotyping in conjunction with agronomic and genetic approaches. Functional Plant Biology, 45, 606-619. [CrossRef]
- Goyal V, Rani D, Ritika, Mehrotra S, Deng C, Wang Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. Plants (Basel). 2023 Nov 1;12(21):3744. [CrossRef]
- Saad Hanif, Rabia Javed, Mumtaz Cheema, Misbah Zeb Kiani, Snovia Farooq, Muhammad Zia. 2024. Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives. Plant Nano Biology, Vol. 10 p. 100110. [CrossRef]
- Zhu, Jiahui & Li, Jinfeng & Liu, Shiqi & Zhan, Xinhua & White, Jason & Gardea-Torresdey, Jorge & Xing, Baoshan. (2020). Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano. 7. 3901-3913. [CrossRef]
- Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F. and Rico, C.M. 2021. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano, 8(5), 1196-210. [CrossRef]
- Natasha, Shahid, M., Farooq, A.B.U., Rabbani, F., Khalid, S. and Dumat, C. 2020. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere, 245, 125605. [CrossRef]
- Khan, I., Samrah, A., & Rizwan, M., Hassan, Z., Akram, M., Tariq, R., Brestic, M., and Xie, W. (2022). Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environmental Science and Pollution Research. 29 (2). [CrossRef]
- S.A. Ekanayake, P.I. Godakumbura. Synthesis of a dual-functional nanofertilizer by embedding ZnO and CuO nanoparticles on an alginate-based hydrogel. ACS Omega, 6 (40) (2021), pp. 26262-26272. [CrossRef] [PubMed]
- T. Wu, M. Tang. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol., 38 (1) (2018), pp. 25-40. [CrossRef] [PubMed]
- Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22. [CrossRef] [PubMed]

| Name of nano fertilizer | Constituents | Name of Manufacturer | Country |
| Nano urea plus | Potential to cut the requirement of urea by 50%. Provide N with 16% w/w. | Indian Farmers Fertilizer Cooperative Ltd. | India |
| Nano DAP | Increase soil fertility, plant growth, crop yield and quality parameters of the crop. Provide N and P with 8 and 16% w/v, respectively. | Indian Farmers Fertilizer Cooperative Ltd. | India |
| Nano Copper | With 0.8% w/w copper provides both nutrition and protection to the plant. | Indian Farmers Fertilizer Cooperative Ltd. | India |
| Nano Zinc | With 1.0% w/w zinc for the preventive and curative treatments of zinc deficiency in crops and soils | Indian Farmers Fertilizer Cooperative Ltd. | India |
|
Biozar Nano-Fertilizer |
Combination of organic materials, micronutrients, and macromolecules | Fanavar Nano-Pazhoohesh Markazi Company | Iran |
| Master Nano Chitosan Organic | Water-soluble liquid chitosan, organic acid, salicylic acids, and phenolic compounds |
Pannaraj Intertrade |
Thailand |
| Green Nano | Combination of N, P, K, Ca, Mg, S, Fe, Mn, Cu, and Zn | Green Organic World Co., Ltd. | Thailand |
|
TAG NANO (NPK, PhoS, Zinc, Cal, etc.) fertilizers |
Protein–lacto–gluconate chelated with micronutrients, vitamins, probiotics, seaweed extracts, and humic acid | Tropical Agrosystem India Pvt Ltd. | India |
| Nano Max NPK Fertilizer | Multiple organic acids chelated with major nutrients, amino acids, organic carbon, organic micronutrient elements, vitamins, and probiotics |
JU Agri Sciences Pvt Ltd. |
India |
| Nano Green | Extracts of corn, grain, soybeans, potatoes, coconut, and palm |
Nano Green Sciences, Inc. |
India |
| Nano fertilizer (EcoStar) | Organic matter, N, K, C, and N Humic + Amino Acid + Fulvic Acid + Atonic + Natural Brassino + Seaweed (Plant Energizer, Flowering Stimulant, and Yield Booster) | Shan Maw Myae Trading Co., Ltd. | India |
| PPC Nano | M protein, 19.6%; Na2O, 0.3%; K2O, 2.1%; (NH4)2SO4, 1.7%; diluent, 76% |
WAI International Development Co. Ltd. |
Malaysia |
| Magic Green | Combination of Ca, Mg, Si, K, Na, P, Fe, Al, S, Ba, Mn, and Zn | AC International Network Co., Ltd. | Germany |
| Nano-Ag AnswerR | Microorganisms, sea kelp, and mineral electrolytes | Urth Agriculture | United States |
| Nano ultra-fertilizer | Organic matter, N, P, K, P, K, and Mg | SMTET Eco-technologies Co., Ltd. | Taiwan |
| Hero super nano | Combination of N, P, K, Ca, Mg, and S | World Connect Plus Myanmar Co., Ltd. | Thailand |
| Nano Capsule | N, 0.5%; P2O5, 0.7%; K2O, 3.9%; Ca, 2.0%; Mg, 0.2%; S, 0.8%; Fe, 2.0%; Mn, 0.004%; Cu, 0.007%; Zn, 0.004% |
The Best International Network Co., Ltd. |
Thailand |
| Hibong biological fulvic acid | Nano fertilizer, humic acid. Chitosan oligosaccharides ≥ 30 g/L, N ≥ 46 g/L, P2O5 ≥ 21 g/L, K2O ≥ 62 g/L, organic matter: 130 g/L | Urth Agriculture | United States |
| NanoPack® | Sulfur, copper, iron, manganese, and zinc | Aqua-Yield® | United States |
| Selenium colloid [Se] – universal antioxidant | Selenium colloid 99.9% | Land Green & Technology Co., Ltd. | Taiwan |
| Nano-GroTM | Plant growth regulator and immunity enhancer | Agro Nanotechnology Corp. | United States |
| Seaweed nano-organic carbon fertilizer | NPK: 2–3–3, seaweed extract ≥5%, organic matter: 35%, humic acid ≥5%, amino acid ≥5% | Qingdao Hibong Fertilizer Co., Ltd. | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).