Submitted:
28 December 2025
Posted:
29 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
3. Experimental data and ML models
3.1. Experimental data
3.2. ML models
3.1.1. Extreme gradient boosting
3.1.2. Deep neural network
4. Results and Discussion
4.1. High cycle fatigue
4.2. Fatigue crack growth
5. Conclusions
- Both ML models demonstrated similar accuracy and performance on the test data for all three scanning strategies.
- The HCF test data are more sensitive wit hyperparameters as compared to FCGR data set.
- For HCF test data set both models produced nearly identical R2 values, while for FCGR test data set DNN model achieved a higher R2 compared to XGB.
- Both models (XGB and DNN) showed predicted life for the HCF test dataset with more than 90% survivability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acharya, S.; Gopal, V.; Gupta, S.K.; Nilawar, S.; Manivasagam, G.; Suwas, S.; Chatterjee, K. Anisotropy of Additively Manufactured Co–28Cr–6Mo Influences Mechanical Properties and Biomedical Performance. ACS Appl. Mater. Interfaces 2022, 14, 21906–21915. [Google Scholar] [CrossRef] [PubMed]
- Yoda, K.; Suyalatu; Takaichi, A.; Nomura, N.; Tsutsumi, Y.; Doi, H.; Kurosu, S.; Chiba, A.; Igarashi, Y.; Hanawa, T. Effects of Chromium and Nitrogen Content on the Microstructures and Mechanical Properties of As-Cast Co–Cr–Mo Alloys for Dental Applications. Acta Biomater. 2012, 8, 2856–2862. [Google Scholar] [CrossRef]
- Jenko, M.; Gorenšek, M.; Godec, M.; Hodnik, M.; Batič, B.Š.; Donik, Č.; Grant, J.T.; Dolinar, D. Surface Chemistry and Microstructure of Metallic Biomaterials for Hip and Knee Endoprostheses. Appl. Surf. Sci. 2018, 427, 584–593. [Google Scholar] [CrossRef]
- Hedberg, Y.S.; Qian, B.; Shen, Z.; Virtanen, S.; Odnevall Wallinder, I. In Vitro Biocompatibility of CoCrMo Dental Alloys Fabricated by Selective Laser Melting. Dent. Mater. 2014, 30, 525–534. [Google Scholar] [CrossRef]
- Koizumi, Y.; Chen, Y.; Li, Y.; Yamanaka, K.; Chiba, A.; Tanaka, S.-I.; Hagiwara, Y. Uneven Damage on Head and Liner Contact Surfaces of a Retrieved Co–Cr-Based Metal-on-Metal Hip Joint Bearing: An Important Reason for the High Failure Rate. Mater. Sci. Eng. C 2016, 62, 532–543. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, K.-S.; AlMangour, B.; Grzesiak, D.; Lee, K.-A. Effect of Unit Cell Topology on the Tensile Loading Responses of Additive Manufactured CoCrMo Triply Periodic Minimal Surface Sheet Lattices. Mater. Des. 2021, 206, 109778. [Google Scholar] [CrossRef]
- Morettini, G.; Razavi, N.; Zucca, G. Effects of Build Orientation on Fatigue Behavior of Ti-6Al-4V as-Built Specimens Produced by Direct Metal Laser Sintering. Procedia Struct. Integr. 2019, 24, 349–359. [Google Scholar] [CrossRef]
- Xu, Z.W.; Liu, A.; Wang, X.S. The Influence of Building Direction on the Fatigue Crack Propagation Behavior of Ti6Al4V Alloy Produced by Selective Laser Melting. Mater. Sci. Eng. A 2019, 767, 138409. [Google Scholar] [CrossRef]
- Roirand, H.; Hor, A.; Malard, B.; Saintier, N. Effect of Laser-scan Strategy on Microstructure and Fatigue Properties of 316L Additively Manufactured Stainless Steel. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 32–48. [Google Scholar] [CrossRef]
- Cao, Y.; Moumni, Z.; Zhu, J.; Gu, X.; Zhang, Y.; Zhai, X.; Zhang, W. Effect of Scanning Speed on Fatigue Behavior of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion. J. Mater. Process. Technol. 2023, 319, 118043. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Qian, G.; Berto, F. Machine Learning Based Very-High-Cycle Fatigue Life Prediction of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting. Int. J. Fatigue 2022, 158, 106764. [Google Scholar] [CrossRef]
- Ben Chaabene, W.; Flah, M.; Nehdi, M.L. Machine Learning Prediction of Mechanical Properties of Concrete: Critical Review. Constr. Build. Mater. 2020, 260, 119889. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, G.; Long, W.; Liaw, P.K.; Ren, J. Fatigue Life Prediction of the FCC-Based Multi-Principal Element Alloys via Domain Knowledge-Based Machine Learning. Eng. Fract. Mech. 2024, 296, 109860. [Google Scholar] [CrossRef]
- Bao, H.; Wu, S.; Wu, Z.; Kang, G.; Peng, X.; Withers, P.J. A Machine-Learning Fatigue Life Prediction Approach of Additively Manufactured Metals. Eng. Fract. Mech. 2021, 242, 107508. [Google Scholar] [CrossRef]
- Kamble, R.G.; Raykar, N.R.; Jadhav, D.N. Machine Learning Approach to Predict Fatigue Crack Growth. Mater. Today Proc. 2021, 38, 2506–2511. [Google Scholar] [CrossRef]
- Chen, S.; Bai, Y.; Zhou, X.; Yang, A. A Deep Learning Dataset for Metal Multiaxial Fatigue Life Prediction. Sci. Data 2024, 11, 1027. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, G.; Kong, G.; Wei, L.; Yu, X.; Jianchuan, Z.; Ran, C.; Luo, L. A Data-Driven Model for Predicting Fatigue Performance of High-Strength Steel Wires Based on Optimized XGBOOST. Eng. Fail. Anal. 2024, 164, 108710. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Mi, D.; Liu, Z.; Long, X.; Wen, S.; Jiang, C. A New Fatigue Life Prediction Method for Welded Joints Based on Machine Learning Incorporating Defect Information and Physics of Failure. Int. J. Fatigue 2026, 202. [Google Scholar] [CrossRef]
- Guo, K.; Yan, H.; Huang, D.; Yan, X. Active Learning-Based KNN-Monte Carlo Simulation on the Probabilistic Fracture Assessment of Cracked Structures. Int. J. Fatigue 2022, 154. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, H.; Dong, H. Using Deep Neural Network with Small Dataset to Predict Material Defects. Mater. Des. 2019, 162. [Google Scholar] [CrossRef]
- Zhang, X.C.; Gong, J.G.; Xuan, F.Z. A Deep Learning Based Life Prediction Method for Components under Creep, Fatigue and Creep-Fatigue Conditions. Int. J. Fatigue 2021, 148. [Google Scholar] [CrossRef]
- Braun, M.; Kellner, L. Comparison of Machine Learning and Stress Concentration Factors-based Fatigue Failure Prediction in Small-scale Butt-welded Joints. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 3403–3417. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. Machine Learning Based Fatigue Life Prediction with Effects of Additive Manufacturing Process Parameters for Printed SS 316L. Int. J. Fatigue 2021, 142, 105941. [Google Scholar] [CrossRef]
- Shi, T.; Sun, J.; Li, J.; Qian, G.; Hong, Y. Machine Learning Based Very-High-Cycle Fatigue Life Prediction of AlSi10Mg Alloy Fabricated by Selective Laser Melting. Int. J. Fatigue 2023, 171, 107585. [Google Scholar] [CrossRef]
- Konda, N.; Verma, R.; Jayaganthan, R. Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V. Met. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Jat, V.K.; Patil, R.U.; Samant, S.S. Influence of Scanning Strategies on the Tensile and Fatigue Properties of Direct Metal Laser Sintering-Printed Co-Cr-Mo Alloy. J. Mater. Eng. Perform. 2025, 34, 7479–7495. [Google Scholar] [CrossRef]
- Jat, V.K.; Patil, R.U.; Yadav, V.K. Fracture Toughness and Fatigue Crack Growth in DMLS Co-Cr-Mo Alloy: Unraveling the Role of Scanning Strategies. Theor. Appl. Fract. Mech. 2024, 134, 104681. [Google Scholar]
- Bera, A.K.; Bilias, Y. The MM, ME, ML, EL, EF and GMM Approaches to Estimation: A Synthesis. J. Econom 2002, 107. [Google Scholar] [CrossRef]
- Shen, L.; Qian, Q. A Virtual Sample Generation Algorithm Supporting Machine Learning with a Small-Sample Dataset: A Case Study for Rubber Materials. Comput. Mater. Sci. 2022, 211, 111475. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, D.; Wang, R.; Sergeichev, I.; Sun, J.; Qian, G. Fatigue Short Crack Growth Prediction of Additively Manufactured Alloy Based on Ensemble Learning. Fatigue Fract. Eng. Mater. Struct. 2025, 48, 1847–1865. [Google Scholar] [CrossRef]
- Zhang, X.C.; Gong, J.G.; Xuan, F.Z. A Physics-Informed Neural Network for Creep-Fatigue Life Prediction of Components at Elevated Temperatures. Eng. Fract. Mech. 2021, 258, 108130. [Google Scholar] [CrossRef]
- Nadda, M.; Shah, S.K.; Roy, S.; Yadav, A. CFD-Based Deep Neural Networks (DNN) Model for Predicting the Hydrodynamics of Fluidized Beds. Digit. Chem. Eng. 2023, 8, 100113. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Kim, J. Elastic Exponential Linear Units for Convolutional Neural Networks. Neurocomputing 2020, 406, 253–266. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Gong, J.; Xuan, F.-Z. Machine Learning-Based Fatigue Life Prediction of Metal Materials: Perspectives of Physics-Informed and Data-Driven Hybrid Methods. Eng. Fract. Mech. 2023, 284, 109242. [Google Scholar] [CrossRef]
- Lei, L.; Li, B.; Wang, H.; Huang, G.; Xuan, F. High-Temperature High-Cycle Fatigue Performance and Machine Learning-Based Fatigue Life Prediction of Additively Manufactured Hastelloy X. Int. J. Fatigue 2024, 178, 108012. [Google Scholar] [CrossRef]










| Hyperparameters | Booster | Learning rate | Regularization term (λ) | Maximum depth | Number of estimators | Min. child weight | Random state | |
|---|---|---|---|---|---|---|---|---|
| Value | HCF | GB tree | 0.1 | 0.2 | 3 | 200 | 2 | 15 |
| FCGR | 2 | 100 | 10 | |||||
| Hyperparameters | Number of Hidden Layers | Learning Rate (Adam) | Neurons on Each Layer | Batch Size | Drop Out | Epochs | Random Seed | |
|---|---|---|---|---|---|---|---|---|
| Value | HCF | 35 | 0.001 | 40 | 24 | 0.02 | 200 | 27 |
| FCGR | 10 | 24 | 15 | |||||
| Model | R2 | MSE |
|---|---|---|
| XGB | 0.963 | 5.8×10−3 |
| DNN | 0.961 | 5×10−3 |
| Model | R2 | MSE |
|---|---|---|
| XGB | 0.946 | 1×10−4 |
| DNN | 0.963 | 3×10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
