Preprint
Article

This version is not peer-reviewed.

Optimal Branch Bending Angle for Korla Fragrant Pear: A Multi-Trait Physiological Trade-Off Framework

Submitted:

24 December 2025

Posted:

25 December 2025

You are already at the latest version

Abstract
The optimal branch bending angle for Pyrus sinkiangensis Yü (Korla fragrant pear) remains undefined. In this study, the optimal angle was determined by integrating the phenological, nutritional, hormonal, and fruit-quality responses across a 15 day bloom window. Four branch angles (40°, 60°, 80°, and 100°) were applied to 8 year old trees in spring 2022, and flowering dynamics, bud carbon/nitrogen status, leaf morphology/mineral content, fruiting shoot architecture, endogenous hormones, and fruit quality were comprehensively evaluated. The 80° angle maximized the fruit set (11.77%) and bud soluble sugar content (8.84 mg/g DW), significantly outperforming the other angles (p < 0.05). The flowering rate peaked at 100° (7.89%) but was statistically comparable to that at 60° and 80° (p > 0.05); calyx removal was greatest at 60° (73.33%), with no significant difference from that at 80° (71%, p > 0.05). These reproductive benefits aligned with enhanced leaf source capacity—80° pulling resulted in the greatest leaf area (59.51 cm²), the greatest amount of chlorophyll (3.11 mg/g DW), and elevated N/Mg/Cu concentrations. Branch architecture was optimized at 80°, with the percentage of medium fruiting spurs reaching 41.1% and the xylem:phloem dry-weight ratio peaking at 1.78, indicating the development of efficient assimilate transport pathways. Hormonally, 80° triggered a distinct cascade: a transient GA₄/GA₇ surge (50.6 and 1.34 ng/g DW) on 28 April, followed by sustained IAA elevation (2.05 ng/g DW) and zeatin stabilization (0.27–0.29 ng/g DW) during ovary development. Consequently, the fruit quality was comprehensively improved at 80°—the single-fruit weight (110.7 g), soluble sugar content (10.08 mg/g DW), and sugar/acid ratio (17.08) were greatest, whereas the stone-cell content was lowest (0.49 mg/g DW). Principal component analysis of 57 traits confirmed 80° as the system-wide optimum (D = 0.718). These results demonstrate that an 80° bending angle synchronizes carbohydrate supply, hormone signaling, and fruit quality in Korla fragrant pear, providing a low-cost, nonchemical benchmark for precision canopy management in high-density orchards.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated