Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Ti3C2 (MXene)/CNTs Films
2.3. Fabrication of Emitters
3. Results and Discussion
3.1. Fabrication and Characterization of Film
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A. K.; Iqbal, M.; Hussain, I.; Mahmood, A.; Khan, U.; Khan, M. F.; Zhang, H.; Xie, Z. J. Recent advances in MXenes: a future of nanotechnologies. J. Mater. Chem. A 2023, 11, 19764–19811. [Google Scholar] [CrossRef]
- Wu, H.; Shen, S. Q.; Xu, X. Y.; Qiao, C. Y.; Chen, X. H.; Li, J.; Li, W. W.; Wei, O. Y. Facile fabrication and high field emission performance of 2-D Ti3C2Tx MXene nanosheets for vacuum electronic devices. IEEE Transactions on Electron Devices 2020, 67, 5138–5143. [Google Scholar] [CrossRef]
- Naguib, M.l; Barsoum, M. W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef] [PubMed]
- She, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589−594. [Google Scholar] [CrossRef]
- Kiran, N. U.; Deore, A. B.; More, M. A.; Late, D. J.; Rout, C. S.; Mane, P.; Chakraborty, B.; Besra, L.; Chatterjee, S. Comparative study of cold electron emission from 2D Ti3C2TX MXene nanosheets with respect to its precursor Ti3SiC2 MAXphase. ACS Appl. Electron. Mater. 2022, 4, 2656−2666. [Google Scholar] [CrossRef]
- Hong, X. D.; Zheng, H. R.; Liang, D. Enhanced field emission properties From plasma treated Ti₃C₂Tₓ (MXene) emitters. Mater. Res. Express 2020, 7, 115011. [Google Scholar] [CrossRef]
- Zhan, Y. G.; Lei, L.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. High-strength, low infrared emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. Mater. Horiz 2023, 10, 235–247. [Google Scholar] [CrossRef]
- Ding, W. J.; Liu, P.; Bai, Z. Z.; Wang, Y. Y.; Liu, G. Q.; Jiang, Q. L.; Jiang, F. X.; Liu, P. P.; Liu, C. G.; Xu, J. K. Constructing Layered MXene / CNTs Composite Film with 2D–3D Sandwich Structure for High Thermoelectric Performance. Adv. Mater. Interfaces 2020, 7, 2001340. [Google Scholar] [CrossRef]
- Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered Ostwald Ripening-Induced Self-Catalyzed Growth of CNTs on MXene for Robust Lithium–Sulfur Batteries. Small 2021, 17, 2007446. [Google Scholar] [CrossRef]
- Wan, S.J.; Li, X.; Chen, Y.; Liu, N.; Du, Y.; Dou, S.X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99. [Google Scholar] [CrossRef]
- Weng, G.M.; Li, J. Y.; Mohamed Alhabeb; Christopher Karpovich; Wang H; Jason Lipton; KathleenMaleski; Jaemin Kong; Evyatar Shaulsky; Menachem Elimelech; Yury Gogotsi; André D. Taylor Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding. Adv. Funct. Mater. 2018, 28, 1803360. [CrossRef]
- Wu, H.; Zhu, C. B.; Li, X. L.; Hu, X. P.; Xie, H.; Lu, X.; Qu, J.P. Layer-by-layer assembly of multifunctional NR / MXene / CNTs composite films with exceptional electromagnetic interference shielding performances and excellent mechanical properties. Macromol. Rapid Commun. 2022, 43, 2200387. [Google Scholar] [CrossRef]
- Aamir Iqbal; Pradeep Sambyal; Chong Min Koo 2D MXenes for electromagnetic shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. [CrossRef]
- Wu, F. S.; Hu, P. Y.; Hu, F. Y.; Tian, Z. H.; Tang, J. W.; Zhang, P. G.; Pan, L.; Michel W. Barsoum; Cai, L. Z.; Sun, Z. M. Multifunctional MXene / C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 2023, 15, 194. [Google Scholar] [CrossRef]
- Lee, J. S.; You, K. H.; Park, C. B.; Photoactive, H. Low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1084–1088. [Google Scholar] [CrossRef]
- Liu, P. Super-aligned carbon nanotube neutralizers for aerospace. nature reviews electrical engineering 2024, 1, 73–74. [Google Scholar] [CrossRef]
- Evtukh, A.; Hartnagel, H.; Yilmazoglu, O.; Mimura, H.; Pavlidis, Band Bending and Work Function.D. Vacuum nanoelectronic devices: novel electron sources and applications; John Wiley & Sons: Chennai, India, 2015;PP.105-107.
- Chen, J. T.; Yang, B. G.; Lim, Y. D.; Duan, W. H.; Zhao, Y.; Tay, B. K.; Yan, X. B. Ti3C2 (MXene) based field electron emitters. Nanotechnology 2020, 31, 285701. [Google Scholar] [CrossRef]
- Yang, B. G.; Chen, J. T.; Wu, X. N.; Liu, B.; Liu, L. Y.; Tang, Y.; Yan, X. B. Enhanced field emission performance of MXene–TiO2 composite films. Nanoscale 2021, 13, 7622–7629. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, Saleesha; Gogotsi, Y. Guidelines for Synthesis and processing of two-dimensional titanium carbide ( Ti3C2Tx MXene ). Chem. Mater. 2017, 29, 7633−7644. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Min, H; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides ( MXenes ). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef]
- Yu, W.; Liu, C. H.; Fan, S. S. Advances of CNT-based systems in thermal management. Nano Res. 2021, 14, 2471–2490. [Google Scholar] [CrossRef]
- Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv. Mater. 2011, 23, 1154–1161. [Google Scholar] [CrossRef]
- Wang, Y. F.; Liang, L. Y.; Du, Z. R.; Wang, Y. M.; Liu, C. T.; Shen, C. Y. Biodegradable PLA / CNTs / Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding. J Mater Sci: Mater Electron 2021, 32, 25952–25962. [Google Scholar] [CrossRef]
- Lai, S. H.; Chang, K. L.; Shih, H. C.; Huang, K. P.; Lin, P. Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures. Appl. Phys. Lett. 2004, 85, 6248–6250. [Google Scholar] [CrossRef]
- Qiao, C. Y.; Wu, H.; Xu, X.; Guan, Z. X.; Ou-Yang, W. Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interfaces 2021, 8, 2100903. [Google Scholar] [CrossRef]
- Pandey, A.; Prasad, A.; Moscatello, J. P.; Engelhard, M; Wang, C. M.; Yap, Y. K. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. Pandeyetal 2013, 7, 117–125. [Google Scholar] [CrossRef]
- De Rose, L. B.; Catanzaro, D. H.; Choi, C.; Scherer, A. Effect of praseodymium coating on electron emission from a nanoscale gold field emitter array. J. Vac. Sci. Technol. B 2023, 41, 042801. [Google Scholar] [CrossRef]
- Kuttel, O.M.; Groning, O.; Emmenegger, C.; Nilsson, L.; Maillard, E.; Diederich, L.; Schlapbach, L. Enhanced field emission from a carbon nanotube array coated with a hexagonal boron nitride thin film. small 2015, 11, 3710–3716. [Google Scholar]
- Schultz, T.; Frey, N.C.; Hantanasirisaku, K.; Park, S.; May, S. J.; Shenoy, V. B.; Gogotsi, Y.; Koch, N. Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene. Chem. Mater. 2019, 31, 6590−6597. [Google Scholar] [CrossRef]
- Ahmed, S. F.; Moon, M. W.; Lee, K. R. Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix. Appl. Phys. Lett. 2008, 92, 193502. [Google Scholar] [CrossRef]
- Jonge, N. D.; Allioux, M.; Doytcheva, M.; Kaiser, M.; Teo, K. B. K.; Lacerda, R. G.; Milne, W. I. Characterization of the field emission properties of individual thin carbon nanotubes. Appl. Phys. Lett. 2004, 85, 1607–1609. [Google Scholar] [CrossRef]
- Wu, Y. H.; Li, J.; Ye, J. C.; Song, Y. J.; Chen, X. H.; Huang, S. M.; Sun, Z.; Wei, O. Y. Outstanding field emission properties of titanium dioxide / carbon nanotube composite cathodes on 3D nickel foam. Journal of Alloys and Compounds 2017, 726, 675–679. [Google Scholar] [CrossRef]
- Forbes, R. G. Field emission: Applying the “magic emitter” validity test to a recent paper, and related research-literature integrity issues. J. Vac. Sci. Technol. B 2023, 41, 042807. [Google Scholar] [CrossRef]
- Mahajan, A; Khan, N.; Yadav, K. K.; Jha, M.; Ghosh, S. Efficient field emission from ultrafine nanostructured lanthanum sulfide synthesized by chemical route. App. Sur. Sci. 2023, 623, 156996. [Google Scholar] [CrossRef]
- Limbu, T. B.; Chitara, B.; Orlando, J. D.; Garcia Cervantes, M. Y.; Kumari, S.; Li, Q.; Tang, Y. G.; Yan, F. Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 2020, 8, 4722–4731. [Google Scholar] [CrossRef]
- Ahmed, sk. F.; Ghosh, P. K.; khan, S.; Mitra, M. K.; Chattopadhyay, K. K. Low-macroscopic field emission from nanocrystalline Al doped SnO2 thin films synthesized by sol–gel technique. Appl. Phys. A 2007, 86, 139–143. [Google Scholar] [CrossRef]
- Huang, Y. F.; Chen, Y.; Huang, Z. J.; Zeng, M. X.; Gu, Z. G.; Yang, W.; Chen, J. P-type Si-Tips with integrated nanochannels for stable nonsaturated high current density field electron emission. Personal use is permitted, but republication/redistribution requires IEEE permission. Ieee transactions on electron devices 2022, 69, 7, 3908-3913. [Google Scholar] [CrossRef]
- Hong, X. D.; Zheng, H. R.; Liang, D. Enhanced field emission properties from plasma treated Ti3C2Tx (MXene) emitters. Mater. Res. Express 2020, 7, 115011. [Google Scholar] [CrossRef]
- Forbes, R. G.; Deane, J. H. B. Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission. Proc. R. Soc., Ser. A 2007, 463, 2907–2927. [Google Scholar] [CrossRef]
- Li, H. Q.; Wu, Z.; Xing, Y, Q.; Li, B. G.; Liu, L. Photoelectric synergistic response properties of the Ti3C2Tx MXene - CNT / PDMS bilayer actuator. Nano Energy 2022, 103, 107821. [Google Scholar] [CrossRef]
- Wang, J. L.; Zhang, Z.; Yan, X. F.; Zhang, S. L.; Wu, Z. H.; Zhuang, Z. H.; Han, W. Q. Rational design of porous N-Ti3C2 MXene / CNT microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 2020, 12, 4. [Google Scholar] [CrossRef]
- Agresti, A.; Pazniak, A.; Pescetelli, S.; Vito, A. Di.; Rossi, D.; Pecchia, A.; Auf der Maur, M.; Liedl, A.; Larciprete, R.; Kuznetsov, D.V.; D. Saranin; Carlo, A. Di. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 2019, 18, 1228–1234. [CrossRef] [PubMed]
- Zhang, P. C.; Ru, X. H.; Li, H. Y.; Liang, H. Y.; Wang, H. P.; Yang, C. H.; Zhang, X. G.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Efficient MXene / CNT electromagnetic shielding composite films with self-assembly multilayer structure. J Mater Sci Mater Electron 2023, 34, 39. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).