Preprint
Article

This version is not peer-reviewed.

Towards Scalar-Field Actions in General Relativity from a Maximum-Entropy Displacement Ensemble

Submitted:

19 December 2025

Posted:

22 December 2025

You are already at the latest version

Abstract
We present a maximum-entropy (MaxEnt) derivation of spacetime geometry starting from a quantum thermal ensemble of local displacement fluctuations. The sole constraint imposed is the expectation value of a quadratic line-element observable. Maximization of entropy yields a Gaussian displacement kernel whose second moments encode an emergent metric structure. Beginning in a locally inertial (flattened Minkowski) frame, we show how curved spacetime geometry and field-space metrics arise through pushforward of the same MaxEnt measure, performed entirely inside the defining integrals. We demonstrate the equivalence of this formulation with the quantum thermal (Matsubara) density-matrix description, without assuming a prior Hilbert-space structure. The resulting geometry is expectation-valued and information-theoretic in origin. This framework provides a unified statistical foundation for spacetime geometry consistent with information geometry, quantum statistical mechanics, and covariant field theory.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated