Submitted:
25 December 2025
Posted:
25 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Newtonian Gravity and Its Explanatory Domain
3. Desmos Theory and the Interaction Functional
4. Newtonian Gravity as a Special Case of Desmos Theory
5. The Moon Case
6. Axiomatic Status of Binding Dominance
7. Desmos as a Connection Theory: A Holistic View of Causality
7.1. Desmos to General Relativity
7.2. Energetic and Quantum Correspondence
8. Conclusions
Appendix A
Appendix B
Appendix C
- mass enters through energy,
- energy, not mass, is the fundamental carrier of interaction,
- distance modulates energy coupling rather than force magnitude.
Appendix D
| Symbol | Physical meaning | SI unit |
|---|---|---|
| Mass of body | kg | |
| Source mass generating gravitational field | kg | |
| Distance between bodies and | m | |
| Radial distance from source mass | m | |
| Newtonian gravitational constant | ||
| Speed of light in vacuum | m | |
| Newtonian gravitational force | N (kg m ) | |
| Acceleration of body | m | |
| Newtonian gravitational potential | ||
| Desmos potential proxy () | ||
| Desmos energy variable () | J (kg ) | |
| Desmos binding-dominance functional | ||
| Desmos interaction scaling constant | ||
| Desmos interaction exponent | dimensionless | |
| Time–time metric component (GR) | dimensionless | |
| Relativistic Desmos potential proxy | ||
| Reduced Planck constant | J s | |
| Angular frequency (quantum correspondence) | ||
| Quantum occupation number (formal correspondence) | dimensionless | |
| GR-consistent Desmos interaction |
Appendix E
- (A)
- Desmos Interaction Functional Δ:

- (B) Newtonian Gravitational Force F:

References
- Malek, A. Quō Vādis theoretical physics and cosmology? from Newton’s Metaphysics to Einstein’s Theology. Ann. Math. Phys. 2023, 6, 065–070. [Google Scholar] [CrossRef]
- Aguilera, M.; Moosavi, S.A.; Shimazaki, H. A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Alazard, D.; Sanfedino, F.; Kassarian, E. Non-linear dynamics of multibody systems: a system-based approach. arXiv Retrieved from. 2025, abs/2505.0. [Google Scholar] [CrossRef]
- Ashman, L. Physics in Minerva’s Academy: early to mid-eighteenth-century appropriations of Isaac Newton’s natural philosophy at the University of Leiden and in the Dutch Republic at large, 1687–c.1750. Intellect. Hist. Rev. 2025, 35, 853–856. [Google Scholar] [CrossRef]
- Aurrekoetxea, J.C.; Clough, K.; Lim, E.A. Cosmology using numerical relativity. Living Rev. Relativ. 2025, 28, 1–90. [Google Scholar] [CrossRef]
- Babichev, E.; Izumi, K.; Noui, K.; Tanahashi, N.; Yamaguchi, M. Generalization of conformal-disformal transformations of the metric in scalar-tensor theories. Phys. Rev. D 2024, 110, 064063. [Google Scholar] [CrossRef]
- Barrow, J.D. Non-Euclidean Newtonian cosmology. Class. Quantum Gravity 2020, 37, 125007. [Google Scholar] [CrossRef]
- Bartlett, R. Quantum Consciousness, Anesthesia, and Cosmological Entanglement. Ipi Lett. 2025, C1–C2. [Google Scholar] [CrossRef]
- Bini, D.; Damour, T.; Geralico, A. Novel Approach to Binary Dynamics: Application to the Fifth Post-Newtonian Level. Phys. Rev. Lett. 2019, 123, 231104. [Google Scholar] [CrossRef] [PubMed]
- Bini, D.; Damour, T.; Geralico, A. Sixth post-Newtonian local-in-time dynamics of binary systems. Phys. Rev. D 2020, 102, 024061. [Google Scholar] [CrossRef]
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G. Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach. Nucl. Phys. B 2020, 955. [Google Scholar] [CrossRef]
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G. The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach. Nucl. Phys. B 2022, 983. [Google Scholar] [CrossRef]
- Bose, A.; Walters, P.L. A multisite decomposition of the tensor network path integrals. J. Chem. Phys. 2022, 156, 024101. [Google Scholar] [CrossRef]
- Brasch, F.E. The Isaac Newton Collection. Publ. Astron. Soc. Pac. 1962, 74, 366. [Google Scholar] [CrossRef]
- Cai, Z.-T.; Li, H.-D.; Chen, W. Quantum-Classical Correspondence of Non-Hermitian Symmetry Breaking. Phys. Rev. Lett. 2025, 134, 240201. [Google Scholar] [CrossRef]
- Cerveny, L.; Einstein, A. BUILDING TRUST. Tao Te Ching. 2020. [CrossRef]
- Challoumis, C. Panphysics Enopiisis. Edelweiss Appl. Sci. Technol. 2024, 8, 9356–9375. [Google Scholar] [CrossRef]
- Chen, B.; Sun, H.; Zheng, Y.-F. Quantization of Carrollian conformal scalar theories. Phys. Rev. D 2024, 110. [Google Scholar] [CrossRef]
- Chen, E.K. Does quantum theory imply the entire Universe is preordained? Nature 2023, 624, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Q.; Ni, R.-H.; Song, Y.; Huang, L.; Wang, J.; Casati, G. Correspondence Principle, Ergodicity, and Finite-Time Dynamics. Phys. Rev. Lett. 2025, 134, 130402. [Google Scholar] [CrossRef] [PubMed]
- Chruściel, P.T. Elements of General Relativity; Springer Nature: Dordrecht, GX, Netherlands, 2019; ISBN 9783030284152. [Google Scholar]
- Close, F. A walk on the wild side. Nature 2004, 432, 277–277. [Google Scholar] [CrossRef]
- Cohen, H.F. Stock and bulk in the latest Newton scholarship. Br. J. Hist. Sci. 2018, 51, 687–701. [Google Scholar] [CrossRef]
- Cun, Y. A Theoretical Framework for Back-Propagation. 1988. Available online: https://consensus.app/papers/a-theoretical-framework-for-backpropagation-cun/a73d81505d9459b9851c580c9288ec9f/.
- D’aMbrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting cosmologies in teleparallelism. Class. Quantum Gravity 2021, 39, 025013. [Google Scholar] [CrossRef]
- Das, S.; Fridman, M.; Lambiase, G. Testing the quantum equivalence principle with gravitational waves. J. High Energy Astrophys. 2025, 48. [Google Scholar] [CrossRef]
- De Angelis, A. Galileo Galilei’s “Two New Sciences”. In History of Physics; Springer Nature: Dordrecht, GX, Netherlands; ISBN, 2021. [Google Scholar]
- de Haro, J. Relations between Newtonian and Relativistic Cosmology. Universe 2024, 10, 263. [Google Scholar] [CrossRef]
- Rainich, G.Y.; Einstein, A. The Meaning of Relativity. Am. Math. Mon. 1946, 53, 93. [Google Scholar] [CrossRef]
- Einstein, A. Einstein’s 1912 manuscript on the special theory of relativity : a facsimile. 2004. Available online: https://consensus.app/papers/einsteins-1912-manuscript-on-the-special-theory-of-einstein/65d18c179b09570a94db7c37b14d39cc/.
- Einstein, A. Albert Einstein to Michele Besso. Phys. Today 2005, 58, 14–14. [Google Scholar] [CrossRef]
- Einstein, A. On the Relativity Problem. Boston Studies in the Philosophy of Science 2007, 250, 1528–1536. [Google Scholar] [CrossRef]
- Einstein, A. Relativity: The Special and the General Theory, 100th Anniversary Edition. 2015a. Available online: https://consensus.app/papers/relativity-the-special-and-the-general-theory-100th-einstein/b27c2697bb9559cf98df9843d3bdcd00/.
- Einstein, A. Relativity; JSTOR: New York, NY, United States, 2015. [Google Scholar] [CrossRef]
- Einstein, A; Hawking, S. The Essential Einstein: His Greatest Works. 1995. Available online: https://consensus.app/papers/the-essential-einstein-his-greatest-works-einstein-hawking/47961fe0f91f548ba3742c11f0a7e70b/.
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. B 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Einstein, A. The Bianchi Identities in the Generalized Theory of Gravitation. Can. J. Math. 1950, 2, 120–128. [Google Scholar] [CrossRef]
- Fields, C.; Friston, K.; Glazebrook, J.F.; Levin, M. A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol. 2022, 173, 36–59. [Google Scholar] [CrossRef]
- Gielen, S. Frozen formalism and canonical quantization in group field theory. Phys. Rev. D 2021, 104, 106011. [Google Scholar] [CrossRef]
- Isaac Newton and Natural Philosophy. Renaiss. Reform. 2018, 41, 229–232. [CrossRef]
- Hashimoto, K.; Sugishita, S.; Tanaka, A.; Tomiya, A. Deep learning and the AdS/CFT correspondence. Phys. Rev. D 2018, 98, 046019. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rep. 2019, 796, 1–113. [Google Scholar] [CrossRef]
- Hess, P. Alternatives to Einstein’s General Relativity Theory. Prog. Part. Nucl. Phys. 2020, 114. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M.; Vilson, O. Transformation properties and general relativity regime in scalar–tensor theories. Class. Quantum Gravity 2015, 32, 235013. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Wightman, W.P.D.; Koyre, A. Book Reviews: From the Closed World to the Infinite Universe. Philos. Q. 1959, 9, 381. [Google Scholar] [CrossRef]
- Leigh, N.W.C.; Wegsman, S. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity. Mon. Not. R. Astron. Soc. 2018, 476, 336–343. [Google Scholar] [CrossRef]
- Levi, M. Effective field theories of post-Newtonian gravity: a comprehensive review*. Rep. Prog. Phys. 2020, 83, 075901. [Google Scholar] [CrossRef]
- Li, X.; Lyu, S.-X.; Wang, Y.; Xu, R.-X.; Zheng, X.; Yan, Y. Toward quantum simulation of non-Markovian open quantum dynamics: A universal and compact theory. Phys. Rev. A 2024, 110, 032620. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Liu, H.-Y.; Nguyen, D.K.; Tran, N.T.T.; Pham, H.D.; Chang, S.-L.; Lin, C.-Y.; Lin, M.-F. The theoretical frameworks. Retrieved from. [CrossRef] [PubMed]
- McTague, J.; Foley, J.J. Non-Hermitian cavity quantum electrodynamics–configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022, 156, 154103. [Google Scholar] [CrossRef]
- Mocz, P.; Lancaster, L.; Fialkov, A.; Becerra, F.; Chavanis, P.-H. Schrödinger-Poisson–Vlasov-Poisson correspondence. Phys. Rev. D 2018, 97, 083519. [Google Scholar] [CrossRef]
- Murray, R.; Orr, B.; Al-Khateeb, S.; Agarwal, N. Constructing a multi-theoretical framework for mob modeling. Soc. Netw. Anal. Min. 2025, 15, 1–15. [Google Scholar] [CrossRef]
- Naruko, A.; Saito, R.; Tanahashi, N.; Yamauchi, D. Ostrogradsky mode in scalar–tensor theories with higher-order derivative couplings to matter. Prog. Theor. Exp. Phys. 2023, 2023. [Google Scholar] [CrossRef]
- Nashed, G.; Bamba, K. Properties of compact objects in quadratic non-metricity gravity. Ann. Phys. 2025, 481. [Google Scholar] [CrossRef]
- Năstase, H. Cosmology and String Theory; Springer Nature: Dordrecht, GX, Netherlands, 2019; ISBN 9783030150761. [Google Scholar]
- Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2019, 788, 213–218. [Google Scholar] [CrossRef]
- Palariev, V.; Shtirbu, A. Theoretical framework of grape irrigation: a review. Collected Works of Uman National University of Horticulture. Retrieved from. 2025. [CrossRef]
- Rehman, A.; Naseer, T.; Dayanandan, B. Interpretation of complexity for spherically symmetric fluid composition within the context of modified gravity theory. Nucl. Phys. B 2025, 1013. [Google Scholar] [CrossRef]
- Rutkin, H.D. Sapientia Astrologica: Astrology, Magic and Natural Knowledge, ca. 1250-1800; Springer Nature: Dordrecht, GX, Netherlands, 2019; ISBN 9783030107789. [Google Scholar]
- Sasmal, S.; Vendrell, O. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method. J. Chem. Phys. 2020, 153, 154110. [Google Scholar] [CrossRef]
- Scali, F. The cosmological constant problem: from Newtonian cosmology to the greatest puzzle of modern theoretical cosmology. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 2025, 383, 20230292. [Google Scholar]
- Shank, J. Between Isaac Newton and Enlightenment Newtonianism. Science Without God? 2019. [Google Scholar] [CrossRef]
- Snobelen, S. The Cambridge Companion to Newton. Isis, 2003. [Google Scholar] [CrossRef]
- Snobelen, S. Apocalyptic themes in Isaac Newton. astronomical physics, 2020; 1, 95–104. [Google Scholar] [CrossRef]
- Vacaru, S.I. Inconsistencies of Nonmetric Einstein–Dirac–Maxwell Theories and a Cure for Geometric Flows of f(Q) Black Ellipsoid, Toroid, and Wormhole Solutions. Fortschritte der Phys. 2025, 73. [Google Scholar] [CrossRef]
- Wang, S.-X.; Yan, Z. General theory for infernal points in non-Hermitian systems. Phys. Rev. B 2024, 110. [Google Scholar] [CrossRef]
- Wiese, U.-J.; Einstein, A. Statistical Mechanics. Manual for Theoretical Chemistry. 2021. [CrossRef]
- Yang, Y.; Ren, X.; Wang, Q.; Lu, Z.; Zhang, D.; Cai, Y.-F.; Saridakis, E.N. Quintom cosmology and modified gravity after DESI 2024. Sci. Bull. 2024, 69, 2698–2704. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
