Submitted:
26 December 2025
Posted:
26 December 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Results
2.1. Multidimensional Wave
2.2. Scalar Envelope of Multidimensional Wave
2.3. Modulating Functions in Multi-Dimensional Representation
2.4. Scalar Wave Envelope in a (3+1)-Dimensional Framework
3. Physical Interpretation and Cosmological Implications
3.1. Definition of Constants
3.2. Transition to Cosmology: Effective FRW Description
3.3. Continuity Equation and Density Evolution
3.4. Expansion Rate and Acceleration
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaboration, I.; et al. Search for Decoherence from Quantum Gravity with Atmospheric Neutrinos. Nature Physics 2024, 20, 913–920. [Google Scholar] [CrossRef]
- Smolin, L. Three Roads to Quantum Gravity; Weidenfeld & Nicolson: London, 2000. [Google Scholar]
- Afshordi, N.; Magueijo, J. Lower Bound on the Cosmological Constant from the Classicality of the Early Universe. Physical Review D 2022, 106, 123518. [Google Scholar] [CrossRef]
- Oppenheim, J. A Postquantum Theory of Classical Gravity? Physical Review X 2023, 13, 041040. [Google Scholar] [CrossRef]
- Li, B.F.; Singh, P. Loop Quantum Cosmology and Its Gauge-Covariant Avatar: A Weak Curvature Relationship. Physical Review D 2022, 106, 026009. [Google Scholar] [CrossRef]
- Carlip, S. Spacetime Foam: A Review. Reports on Progress in Physics 2023, 86, 066001. [Google Scholar] [CrossRef]
- Lehners, J.L. Review of the no-boundary wave function. Physics Reports 2023, 1022, 1–82. [Google Scholar] [CrossRef]
- Hawking, S.W. The boundary conditions of the universe. Proceedings of the Pontif. Acad. Sci. Scr. Varia 1982, Vol. 48, 563–574. [Google Scholar]
- Hawking, S.W.; Penrose, R. The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 1970, 314, 529–548. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory; Cambridge University Press: Cambridge, 2012; Vol. 2. [Google Scholar]
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, 2005. [Google Scholar]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, 2004. [Google Scholar]
- Kiefer, C. Why quantum gravity? In Approaches to Fundamental Physics; Stamatescu, I.O., Seiler, E., Eds.; Springer: Berlin, Heidelberg, 2007; pp. 123–130. [Google Scholar] [CrossRef]
- Oriti, D. Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Cambridge University Press: Cambridge, 2009. [Google Scholar]
- Shvedov, V.; Krolikowski, W. Instantaneous field singularities in electromagnetic waves. New Journal of Physics 2018, 20, 103034. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Oxford, 2013. [Google Scholar]
- Jones, D.S. The Theory of Electromagnetism; Elsevier: Oxford, 2013. [Google Scholar]
- Kogelnik, H.; Li, T. Laser beams and resonators. Applied Optics 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Lax, M.; Louisell, W.H.; McKnight, W.B. From Maxwell to paraxial wave optics. Physical Review A 1975, 11, 1365–1370. [Google Scholar] [CrossRef]
- Kiselev, A.P. New structures in paraxial Gaussian beams. Optics and Spectroscopy 2004, 96, 479–481. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Physical Review 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Hebecker, A.; Wetterich, C. Spinor gravity. Physics Letters B 2003, 574, 269–275. [Google Scholar] [CrossRef]
- Katz, S.; Klemm, A.; Vafa, C. Geometric engineering of quantum field theories. Nuclear Physics B 1997, 497, 173–195. [Google Scholar] [CrossRef]
- Bilson-Thompson, S.; Hackett, J.; Kauffman, L.H.; Wan, Y. Emergent braided matter of quantum geometry. SIGMA 2012, 8, 014. [Google Scholar] [CrossRef]
- Hossenfelder, S. How Gravity Can Explain the Collapse of the Wavefunction. arXiv arXiv:2510.11037. [CrossRef]
- Dolgov, A.D.; Zel’dovich, I.B.; Sazhin, M.V. Cosmology of the Early Universe; Moscow University Press: Moscow, 1988. [Google Scholar]
- Faraoni, V. Three new roads to the Planck scale. American Journal of Physics 2017, 85, 865–869. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized Uncertainty Principle in Quantum Gravity from Micro-Black-Hole Gedanken Experiment. Physics Letters B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Mead, C.A. Possible Connection Between Gravitation and Fundamental Length. Physical Review 1964, 135, B849–B862. [Google Scholar] [CrossRef]
- Sciama, D.W. On the Origin of Inertia. Monthly Notices of the Royal Astronomical Society 1953, 113, 34–42. [Google Scholar] [CrossRef]
- Dicke, R.H. Gravitation without a Principle of Equivalence. Reviews of Modern Physics 1957, 29, 363. [Google Scholar] [CrossRef]
- NASA. What is the Universe Made Of? NASA Science. 2022. Available online: https://science.nasa.gov/universe/composition (accessed on 1 June 2022).
- Freedman, W.L.; et al. Status Report on the Chicago-Carnegie Hubble Program (CCHP): Measurement of the Hubble Constant Using the Hubble and James Webb Space Telescopes. Astrophysical Journal 2025, 985, 203. [Google Scholar] [CrossRef]
- Riess, A.G.; et al. JWST validates HST distance measurements: Selection of supernova subsample explains differences in JWST estimates of local H0. Astrophysical Journal 2024, 977, 120. [Google Scholar] [CrossRef]
- Pascale, M.; et al. SN H0pe: The first measurement of H0 from a multiply imaged Type Ia supernova, discovered by JWST. Astrophysical Journal 2025, 979, 13. [Google Scholar] [CrossRef]
- Adame, A.G.; et al. DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations. Journal of Cosmology and Astroparticle Physics 2025, 2025, 021. [Google Scholar] [CrossRef]
- Collaboration, D.; et al. The Early Data Release of the Dark Energy Spectroscopic Instrument. Astronomical Journal 2024, 168, 32. [Google Scholar] [CrossRef]
- Collaboration, D.; et al. Data Release 1 of the Dark Energy Spectroscopic Instrument. arXiv e-prints 2025, arXiv:2503.14745p. [Google Scholar] [CrossRef]
- Ishibashi, A.; Kodama, H. Stability of Higher-Dimensional Schwarzschild Black Holes. Progress of Theoretical Physics 2003, 110, 901–919. [Google Scholar] [CrossRef]
- Pathria, R.K. The Universe as a Black Hole. Nature 1972, 240, 298–299. [Google Scholar] [CrossRef]
- Casadio, R.; et al. Cosmology from Schwarzschild Black Hole Revisited. Physical Review D 2024, 110, 044001. [Google Scholar] [CrossRef]
- Dohi, A.; et al. Big-Bang Nucleosynthesis on a Bubble Universe Nucleated in a Kerr-AdS_5 Black Hole. Physical Review D 2025, 111, 063501. [Google Scholar] [CrossRef]
- Shamir, L. Galaxy Spin Direction Asymmetry in JWST Deep Fields. Publications of the Astronomical Society of Australia 2024, 41, e038. [Google Scholar] [CrossRef]
- Popławski, N.J. Gravitational Collapse with Torsion and Universe in a Black Hole. arXiv e-prints 2023, arXiv:2307.12190p. [Google Scholar] [CrossRef]
- Shamir, L. The Distribution of Galaxy Rotation in JWST Advanced Deep Extragalactic Survey. Monthly Notices of the Royal Astronomical Society 2025, 538, 76–91. [Google Scholar] [CrossRef]
- Bahamonde, S.; et al. Teleparallel Gravity: From Theory to Cosmology. Reports on Progress in Physics 2023, 86, 026901. [Google Scholar] [CrossRef]
- Carr, B.; et al. Constraints on Primordial Black Holes. Reports on Progress in Physics 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
- Bousso, R. The holographic principle. Reviews of Modern Physics 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. Journal of Mathematical Physics 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
