Preprint
Article

This version is not peer-reviewed.

A Sensor-Driven Extended Reality System for Pre-Prosthetic Kinesthetic Learning in Upper-Limb Amputees

Submitted:

09 December 2025

Posted:

17 December 2025

You are already at the latest version

Abstract

The functional integration of the upper-limb prosthesis is critical for long-term user satisfaction, yet high rates of device abandonment persist. Primary factors contributing to this trend are high cognitive load and difficulties associated with learning muscle control. To address these challenges, a proposal for the development and preliminary evaluation of an Extended Reality (XR) training scenario is presented. The prototype uses an adaptation of a PPG sensor to measure residual limb muscle activity, mapping these signals to control a virtual prosthetic hand. The XR environment represents a controlled platform for trainees to practice gripping in a variety of virtual objects. The approach allows real-time biofeedback enhancing control for the user, aiming to establish a more effective training to improve the adoption and functional outcomes of upper-limb prostheses.

Keywords: 
;  ;  
Subject: 
Engineering  -   Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated