Submitted:
15 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Bee Honeys
2.2. Yeast Strain and Maintenance
2.3. Yeast Inoculum and Wort Preparation and Mead Fermentation
2.4. Physicochemical and Microbiological Analysis
2.5. Quantification of Organic Compounds
2.6. Statistical Analysis
3. Results
3.1. Fermentative Potential of Industrial Yeast Strains
3.2. Fermentation Profile of Selected Strains
3.3. Extracellular Metabolomics of the Selected Strains
3.4. Fermol Distiller JP1 Strain as Mead-Fermenter Yeast
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HPLC | High-Performance Liquid Chromatography |
| TF/P | Triunfo/Pajeú |
| ST/P | Serra Talhada/Pajeú |
| IB/M | Ibimirim/Moxotó |
| MRS | Man, Rogosa & Sharpe medium |
| RID | Refractive Index Detector |
References
- Gupta, J.K.; Sharma, R. Production technology and quality characteristics of mead and fruit-honey wines: a review. Nat. Prod. Radiance 2009, 8, 345–355. [Google Scholar]
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead production: tradition versus modernity. Adv. Food Nutr. Res. 2011, 101–118. [Google Scholar]
- Barbosa, A.B.; Martins, E.A. Produção artesanal de hidromel. Jornada Cient. Tecnol. FATEC Botucatu 2017. [Google Scholar]
- Simão, L.; Wanderley, B.R.D.S.M.; Tavares Vieira, M.P.; Silva Haas, I.C.; Amboni, R.D.M.C.; Fritzen-Freire, C.B. How do different ingredients and additives affect mead production steps and bioactive potential? Food Technol. Biotechnol. 2023, 61, 179–190. [Google Scholar] [CrossRef]
- Jose-Salazar, J.A.; Ballinas-Cesatti, C.B.; Hernández-Martínez, D.M.; Cristiani-Urbina, E.; Melgar-Lalanne, G.; Morales-Barrera, L. Kinetic evaluation of mead production from a non-Saccharomyces strain. Foods 2024, 13, 1948. [Google Scholar] [CrossRef]
- Pinto Neto, W.P.; Lucena, T.M.C.; Paixão, G.A.; Shinohara, N.K.S.; Pinheiro, A.C.; Vicente, A.A.; Souza, R.B.; Morais Junior, M.A. Symbiotic honey beverages: a matrix which tells a story of survival and protection of human health. Int. J. Gastron. Food Sci. 2025, 40, 101183. [Google Scholar] [CrossRef]
- Galvíncio, J.D.; Badarau, M.S.; Barbosa, V.V.; Freire, F.J.; Freire, M.B.G.S.; Souza, W.M. Avaliação do estágio de regeneração do bioma Caatinga na microrregião do Araripe com sensoriamento remoto. Rev. Bras. Geogr. Fís. 2016, 9, 986–996. [Google Scholar] [CrossRef]
- Vidal, M.F. Produção de mel na área de atuação do BNB entre 2011 e 2016. In Caderno Setorial ETENE; 2018. [Google Scholar]
- Pinto-Neto, W.P.; Silva, R.K.; Lima, B.S.; Acioli, G.F.S.; Paixão, G.A.; Muniz, B.C.; Silva, P.K.N.; Costa, R.M.P.B.; Silva, F.S.B.; Melo, H.F.; Souza, R.B.; Morais Junior, M.A. Bee honey of the Pajeú hinterland, Pernambuco, Brazil: physicochemical characterization and biological activity. Food Biosci. 2024, 60, 104289. [Google Scholar] [CrossRef]
- Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feás, X.; Estevinho, L.M. Developments in the fermentation process and quality improvement strategies for mead production. Molecules 2014, 19, 12577–12590. [Google Scholar] [CrossRef] [PubMed]
- Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. Food Chem. 2007, 104, 1250–1257. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma: a review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Vidal, E.E.; de Billerbeck, G.M.; Simões, D.A.; Schuler, A.; François, J.M.; de Morais Junior, M.A. Influence of nitrogen supply on higher alcohol and ester formation in cachaça fermentation. Food Chem. 2013, 138, 701–708. [Google Scholar] [CrossRef]
- Vidal, E.E.; de Morais Junior, M.A.; François, J.M.; de Billerbeck, G.M. Biosynthesis of higher alcohol flavour compounds by Saccharomyces cerevisiae. Yeast 2015, 32, 47–56. [Google Scholar]
- Schwarz, L.V.; Marcon, A.R.; Delamare, A.P.L.; Agostini, F.; Moura, S.; Echeverrigaray, S. Selection of low-nitrogen-demand yeast strains and their impact on mead composition. J. Food Sci. Technol. 2020, 57, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Neto, W.P.; Silva, A.K.L.F.; Araújo, K.S.; Pinheiro, I.O.; Souza, R.B.; Morais Junior, M.A. Optimizing wheat beer production by recycling yeast biomass. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos; São Paulo, 2008. [Google Scholar]
- Leite, F.C.; Basso, T.O.; Pita, W.B.; Gombert, A.K.; Simões, D.A.; de Morais Junior, M.A. Quantitative aerobic physiology of Dekkera bruxellensis. FEMS Yeast Res. 2013, 13, 34–43. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: user manual/tutorial; PRIMER-E: Plymouth, 2006. [Google Scholar]
- Fu, J.; Wang, L.; Sun, J.; Ju, N.; Jin, G. Malolactic fermentation: new approaches to old problems. Microorganisms 2022, 10, 2363. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Implications of new research for malolactic fermentation in wine. Appl. Microbiol. Biotechnol. 2014, 98, 8111–8114. [Google Scholar] [CrossRef]
- Silva-Filho, E.A.; Santos, S.K.B.; Resende, A.M.; Simões, D.A.; de Morais Junior, M.A. Yeast population dynamics in industrial ethanol fermentation. Antonie Van Leeuwenhoek 2005, 88, 13–23. [Google Scholar] [CrossRef]
- Silva-Filho, E.A.; Melo, H.F.; Antunes, D.F.; Santos, S.K.; Resende, A.M.; Simões, D.A.; de Morais Junior, M.A. Isolation of a fermentative Saccharomyces cerevisiae strain. J. Ind. Microbiol. Biotechnol. 2005, 32, 481–486. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Marcazzan, G.L.; Gardini, S.; Fernández-Muiño, M.A.; Sancho, M.T. Sugar composition and related parameters of honeys. J. Food Compos. Anal. 2018, 74, 34–43. [Google Scholar] [CrossRef]
- Loza, J.P.; Chailyan, A.; Förster, J.; Katz, M.; Mortensen, U.H.; Garcia Sanchez, R. Improving the utilization of isomaltose and panose by lager yeast. Fermentation 2021, 7, 107. [Google Scholar] [CrossRef]
- Xu, X.; Asai, K.; Kato, D.; Ishiuchi, K.; Ding, K.; Tabuchi, Y.; Ota, M.; Makino, T. Honey isomaltose and G-CSF induction. Sci. Rep. 2020, 10, 15178. [Google Scholar] [CrossRef]
- Ponnurangam, M.; Balaji, S. Tune in to the terrific applications of turanose. Eur. Food Res. Technol. 2024, 250, 375–387. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, Y.; Zhang, W.; Mu, W. Sucrose isomers as alternative sweeteners. Appl. Microbiol. Biotechnol. 2019, 103, 8677–8687. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.; Čeksterytė, V. Carbohydrate composition and electrical conductivity of honeys. LWT Food Sci. Technol. 2010, 43, 801–807. [Google Scholar] [CrossRef]
- Bertazzini, M.; Medrzycki, P.; Bortolotti, L.; Maistrello, L.; Forlani, G. Amino acid content and nectar choice by honeybees. Amino Acids 2010, 39, 315–318. [Google Scholar] [CrossRef]
- Carter, C.; Shafir, S.; Yehonatan, L.; Palmer, R.G.; Thornburg, R. A novel role for proline in floral nectar. Naturwissenschaften 2006, 93, 72–79. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Cavalcante, D.P.; Parreira, R.C.; Chiareli, R.A.; Ortiz Leoncini, G.; Gomez, R.S.; Ulrich, H.; Ferreira Caixeta, L.; Oliveira-Lima, O.C.; Pinto, M.C.X. Neurobiology of L-proline. Neuroscience 2025, 568, 116–129. [Google Scholar] [CrossRef]
- Habe, H.; Fukuoka, T.; Kitamoto, D.; et al. Biotechnological production of d-glyceric acid. Appl. Microbiol. Biotechnol. 2009, 84, 445–452. [Google Scholar] [CrossRef]
- Matter, Chemical. Glyceric acid. Available online: https://chemicalmatter.com/glyceric-acid (accessed on 16 July 2025).
- Zhang, Q.; Zhu, L.; Li, H.; et al. Insights and progress on biosynthesis and functions of GABA. PeerJ 2024, 12, e18712. [Google Scholar] [CrossRef]
- Coleman, S.T.; Fang, T.K.; Rovinsky, S.A.; Turano, F.J.; Moye-Rowley, W.S. Glutamate decarboxylase and oxidative stress tolerance in yeast. J. Biol. Chem. 2001, 276, 244–250. [Google Scholar] [CrossRef]
- Toohey, J.I. Dehydroascorbic acid as an anti-cancer agent. Cancer Lett. 2008, 263, 164–169. [Google Scholar] [CrossRef]
- Amako, K.; Fujita, K.; Shimohata, T.A.; Hasegawa, E.; Kishimoto, R.; Goda, K. NAD+-specific D-arabinose dehydrogenase in yeast. FEBS Lett. 2006, 580, 6428–6434. [Google Scholar] [CrossRef]
- Wilson, J.X. The physiological role of dehydroascorbic acid. FEBS Lett. 2002, 527, 5–9. [Google Scholar] [CrossRef]
- Gibson, B.; Vidgren, V.; Peddinti, G.; Krogerus, K. Diacetyl control in brewery fermentation via adaptive engineering. J. Ind. Microbiol. Biotechnol. 2018, 45, 1103–1112. [Google Scholar] [CrossRef]
- Mitri, S.; Koubaa, M.; Maroun, R.G.; Rossignol, T.; Nicaud, J.M.; Louka, N. Bioproduction of 2-phenylethanol. Foods 2022, 11, 109. [Google Scholar] [CrossRef]
- Vuralhan, Z.; Morais, M.A.; Tai, S.L.; Piper, M.D.; Pronk, J.T. Phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 4534–4541. [Google Scholar] [CrossRef]
- Bernardino, A.R.S.; Torres, C.A.V.; Crespo, J.G.; Reis, M.A.M. Biotechnological 2-phenylethanol production. Molecules 2024, 29, 5761. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine properties. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Li, H.; et al. Engineering phenylpyruvate decarboxylase for biosynthesis of aromatic derivatives. Metab. Eng. 2025, 91, 466–479. [Google Scholar] [CrossRef]
- Rocha, J.; Borges, N.; Pinho, O. Table olives and health: a review. J. Nutr. Sci. 2020, 9, e57. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Z.; Hassan, S.S.U.; et al. Emerging biopharmaceuticals from Pimpinella genus. Molecules 2023, 28, 1571. [Google Scholar] [CrossRef]
- Da Silva, G.F.; de Souza Júnior, E.T.; Almeida, R.N.; Fianco, A.L.B.; do Espírito Santo, A.T.; Lucas, A.M.; Vargas, R.M.F.; Cassel, E. Supercritical CO₂ extraction of p-anisic acid from Acacia mearnsii. Molecules 2022, 27, 970. [Google Scholar]
- Beitlich, N.; Koelling-Speer, I.; Oelschlaegel, S.; Speer, K. Differentiation of manuka and kanuka honeys. J. Agric. Food Chem. 2014, 62, 6435–6444. [Google Scholar] [CrossRef]
- Bouville, A.S.; Fonte, K.; Portes, P.; et al. Forgotten perfumery plants: hawthorn case study. Chem. Biodivers. 2024, 21, e202301020. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.; Varvaresou, A.; Tsirivas, E.; Demetzos, C. New alternatives to cosmetic preservation. J. Cosmet. Sci. 2010, 61, 107–123. [Google Scholar]
- Vora, V.; Tirgar, P.; Raval, K. Anti-diabetic and insulinotropic effects of p-anisic acid. Chem. Biodivers. 2024, 21, e202401575. [Google Scholar] [CrossRef]
- Han, D.; Kurusarttra, S.; Ryu, J.Y.; Kanaly, R.A.; Hur, H.G. Production of aromatic acids by engineered Escherichia coli. J. Agric. Food Chem. 2012, 60, 11972–11979. [Google Scholar] [CrossRef] [PubMed]







| Code | Commercial name | Supplier | Product | Sensorial characteristics* |
|---|---|---|---|---|
| Sc01 | Saf-Instant | Lesaffre (France) | Bread | Neutral |
| Sc02 | CA-11 | LNF (Brazil) | Cachaça | Neutral |
| Sc03 | LalBrew Diamond | Lallemand (Austria) | German lager beer | Neutral |
| Sc04 | Red Star Premier | Lesaffre (France) | White wine and mead | Neutral, butter, bready |
| Sc05 | LalBrew Belle saison | Lallemand (Austria) | Belgium beer | Fruity and spicy |
| Sc06 | Renascence TR313 | Renaissance (Canada) | White wine | Passion fruits and berries |
| Sc07 | Lalvin k1v-1116 | Lallemand (Canada) | Red wine and mead | Floral aroma |
| Sc08 | Côte de blancs | Fermentis (Belgium) | White wine and mead | Fruity aroma |
| Sc09 | Premier classic | Fermentis (Belgium) | White wine and mead | Fruity aroma |
| Sc10 | Fermol Distiller JP1 | LNF (Brazil) | Cachaça and fuel-ethanol | Neutral |
| Yeast strain | Code | Residual sugars (g/L) | Attenuation | Ethanol (%) |
|---|---|---|---|---|
| Saf-Instant | Sc01 | 44.6±0.7 | 80% | 7.91±0.18 |
| CA-11 | Sc02 | 49.2±2.7 | 78% | 7.91±0.11 |
| Lallemand Diamond | Sc03 | 22.7±1.4 | 90% | 8.79±0.07 |
| Red Star Premier | Sc04 | 49.4±1.2 | 78% | 7.95±0.32 |
| LalBrew Belle saison | Sc05 | 52.9±1.1 | 76% | 7.61±0.13 |
| Renascence TR313 | Sc06 | 47.0±2.0 | 79% | 7.61±0.13 |
| Lalvin k1v-1116 | Sc07 | 22.1±0.5 | 90% | 9.08±0.17 |
| Côte de blancs | Sc08 | 30.4±8.2 | 86% | 6.50±0.14 |
| Premier classic | Sc09 | 30.9±5.1 | 86% | 7.99±0.17 |
| Fermol distiller JP1 | Sc10 | 39.9±0.6 | 82% | 9.66±0,19 |
| Fermentation parameter | Honey origin | ||
|---|---|---|---|
| IB/M | ST/P | TF/P | |
| Initial sugar (g/L) | 274.9±38.1 | 284.6±8.4 | 281.5±23.3 |
| Residual sugar (g/L) | 78.5±4.8 | 70.0±1.5 | 55.1±3.1 |
| Consumed sugar (g/L) | 196.4±15.5 | 214.7±9.6 | 226.4±3.1 |
| Ethanol produced (g/L) | 79.7±16.2 | 88.3±3.3 | 86.1±4.7 |
| Glycerol produced (g/L) | 10.0±1.7 | 6.1±0.9 | 10.2±0.7 |
| Ethanol yield (g/g) | 0.41 | 0.41 | 0.38 |
| Glycerol yield (g/g) | 0.05 | 0.03 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
