Submitted:
15 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. HiPIMS Electrical and Optical Diagnostics
3.2. Mo and Cu Nano-Layers Characterization
4. Discussion
5. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
Abbreviations
| HiPIMS | High Power Impulse Magnetron Sputtering |
| µEBS | Microprobe Elastic Back-Scattering Spectrometry |
| DC | Direct Current |
| OES | Optical Emission Spectroscopy |
| STEM | Scanning Transmission Electron Microscopy |
| FIB | Focusses Ion Beam |
| PVD | Physical Vapor Deposition |
| CCD AM |
Charge Coupled Device Additive Manufacturing |
References
- V. Arbet-Engels et al., “Superconducting niobium cavities, a case for the film technology”, Nucl Instrum Methods Phys Res A, vol. 463, no. 1–2, pp. 1–8, May 2001. [CrossRef]
- J. Langner et al., “Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc”, Vacuum, vol. 80, no. 11–12, pp. 1288–1293, Sep. 2006. [CrossRef]
- A. Anders et al., “Deposition of Niobium and other superconducting materials with high power impulse magnetron sputtering: concept and first results”, in TUIOA06 Proceedings of SRF2011, Chicago, IL USA, 2011, pp. 302–308.
- M. Burton, A. Palczewski, A. M. Valente-Feliciano, C. E. Reece, and T. Jefferson, “Progress with Nb HiPIMS films on 1.3 GHz cu cavities”, 2019. [CrossRef]
- K. Takata, “Overview of NLC/JLC collaboration”, in Proceedings of LINAC2002, Gyeongju, Korea, 2002, pp. 254–258.
- P. Tenenbaum and C. Usa, “The JLC/NLC baseline design”, in Proceedings of the 2003 Particle Accelerator Conference, 2003, pp. 681–683.
- H. Braun et al., “CLIC 2008 parameters -CLIC Note 764”, 2008. Accessed: May 19, 2024. https://indico.cern.ch/event/38861/contributions/1821802/attachments/777055/1065598/par2007.pdf.
- P. N. Burrows, “The compact linear collider (clic) 2018 summary report”, 2018. [CrossRef]
- E. Sicking and R. Ström, “From precision physics to the energy frontier with the Compact Linear Collider”, Nat Phys, vol. 16, no. 4, pp. 386–392, Apr. 2020. [CrossRef]
- R. D. C. Ruth et al., “A Test Accelerator For The Next Linear Collider - SLAC-PUB-6293”, 1993.https://www.slac.stanford.edu/pubs/slacpubs/6250/slac-pub-6293.pdf.
- M. Yoshida et al., “The Status of Nextef; The X-band Test Facility in KEK”, in THP053 Proceedings of LINAC08, Victoria, BC, Canada, 2008, pp. 906–908. https://www.researchgate.net/publication/228968497.
- F. Tecker, “CLIC and CTF3”, J Phys Conf Ser, vol. 110, no. 11, p. 112005, May 2008. [CrossRef]
- A. Edwards, “X-Band LLRF Developments for High Power CLIC Test Stands and Waveguide Interferometry for Phase Stabilisation”, 2022. https://cds.cern.ch/record/2843363/files/CERN-THESIS-2022-245.pdf.
- C. Di Giulio et al., “TEX (TEst stand for X-band) at LNF”, The 2023 International Workshop on Future Linear Colliders, Aug. 2023, Accessed: Jul. 07, 2025. http://arxiv.org/abs/2308.03053.
- M. Volpi et al., “X-LAB: A very high-capacity X-band RF test stand facility at the University of Melbourne”, EPJ Web Conf, vol. 315, p. 02007, Dec. 2024. [CrossRef]
- N. Mounet Ed. (CERN, Geneva, Switzerland), European Strategy for Particle Physics - Accelerator R&D Roadmap. CERN Yellow Reports: Monographs (2022). [CrossRef]
- H. Timko et al., “Mechanism of surface modification in the plasma-surface interaction in electrical arcs”, Phys Rev B Condens Matter Mater Phys, vol. 81, no. 18, May 2010. [CrossRef]
- S. Dobert et al., “High Gradient Performance of NLC/GLC X-Band Accelerating Structures”, in Proceedings of the 2005 Particle Accelerator Conference, IEEE, 2006, pp. 372–374. [CrossRef]
- R. Corsini et al., “A high-gradient test of a 30 GHz copper accelerating structure, CLIC-NOTE-698”, 2006. https://www.researchgate.net/publication/242373966.
- V. Dolgashev, S. Tantawi, Y. Higashi, and B. Spataro, “Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures”, Appl Phys Lett, vol. 97, no. 17, 2010. [CrossRef]
- S. T. Heikkinen, S. Calatroni, and H. Neupert, “Thermal Fatigue Issues in High Gradient Particle Accelerators - CLIC Note 648”, 2006. http://cds.cern.ch/record/921679/files/open-2006-004.pdf.
- L. Laurent et al., “Experimental study of rf pulsed heating”, Physical Review Special Topics - Accelerators and Beams, vol. 14, no. 4, Apr. 2011. [CrossRef]
- G. Wang, E. I. Simakov, and D. Perez, “Ab initio Cu alloy design for high-gradient accelerating structures”, Appl Phys Lett, vol. 120, no. 13, Mar. 2022. [CrossRef]
- M. Volpi et al., “High-Power, High Repetition Rate X-Band Power Source At X-Lab, The X-Band Laboratory For Accelerators And Beams At The University Of Melbourne”, in 16th International Particle Accelerator Conference, 2024.
- W. Wuensch, “Progress in understanding the high-gradient limitations of accelerating structures”, in THYMA02 APAC2007, https://accelconf.web.cern.ch/a07/PAPERS/THYMA02.PDF.
- B. Spataro et al., “Technological issues and high gradient test results on X-band molybdenum accelerating structures”, Nucl Instrum Methods Phys Res A, vol. 657, no. 1, pp. 114–121, Nov. 2011. [CrossRef]
- C. Sakib-Uz-Zaman and M. A. H. Khondoker, “A Review on Extrusion Additive Manufacturing of Pure Copper”, Metals (Basel), vol. 13, no. 5, p. 859, Apr. 2023. [CrossRef]
- B. Spataro et al., “High-power comparison among brazed, clamped and electroformed X-band cavities”, Nucl Instrum Methods Phys Res A, vol. 657, no. 1, pp. 88–93, Nov. 2011. [CrossRef]
- M. Mayerhofer et al., “Red and Green Laser Powder Bed Fusion of Pure Copper in Combination with Chemical Post-Processing for RF Cavity Fabrication”, Instruments, vol. 8, no. 3, p. 39, Jul. 2024. [CrossRef]
- S. V. Kuzikov and M. E. Plotkin, “Theory of thermal fatigue caused by RF pulsed heating”, Int J Infrared Millimeter Waves, vol. 29, no. 3, pp. 298–311, Mar. 2008. [CrossRef]
- M. Aicheler, “Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results”, J Phys Conf Ser, vol. 240, p. 012051, Jul. 2010. [CrossRef]
- S. Heikkinen, S. Calatroni, H. Neupert, W. Wünsch, and G. Switzerland, “Status of the fatigue studies of the CLIC accelerating structures”, in MOPLS128 Proceedings of EPAC 2006, Edinburgh, Scotland, 2006, pp. 858–860.
- P. Landau, R. Z. Shneck, G. Makov, and A. Venkert, “Evolution of dislocation patterns in fcc metals”, in IOP Conference Series: Materials Science and Engineering, 2009. [CrossRef]
- G. Gatti et al., “X-band accelerator structures: On going R&D at the INFN”, Nucl Instrum Methods Phys Res A, vol. 829, pp. 206–212, Sep. 2016. [CrossRef]
- https://indico.cern.ch/event/1099613/, “MeVArc 2022 workshop.”.
- E. Z. Engelberg, A. B. Yashar, Y. Ashkenazy, M. Assaf, and I. Popov, “Theory of electric field breakdown nucleation due to mobile dislocations”, Physical Review Accelerators and Beams, vol. 22, no. 8, Aug. 2019. [CrossRef]
- A. S. Pohjonen, F. Djurabekova, K. Nordlund, A. Kuronen, and S. P. Fitzgerald, “Dislocation nucleation from near surface void under static tensile stress in Cu”, J Appl Phys, vol. 110, no. 2, Jul. 2011. [CrossRef]
- C. Z. Antoine, F. Peauger, and F. Le Pimpec, “Erratum to: Electromigration occurences and its effects on metallic surfaces submitted to high electromagnetic field: A novel approach to breakdown in accelerators”, Nucl Instrum Methods Phys Res A, vol. 670, pp. 79–94, Apr. 2012. [CrossRef]
- R. Shinohara, S. Bagchi, E. Simakov, S. V. Baryshev, and D. Perez, “Thermal and electric field driven rf breakdown precursor formation on metal surfaces”, Physical Review Accelerators and Beams, vol. 27, no. 5, May 2024. [CrossRef]
- A. Descoeudres, Y. Levinsen, S. Calatroni, M. Taborelli, and W. Wuensch, “Investigation of the dc vacuum breakdown mechanism”, Physical Review Special Topics - Accelerators and Beams, vol. 12, no. 9, p. 092001, Sep. 2009. [CrossRef]
- M. R. Stoudt, R. C. Cammarata, and R. E. Ricker, “Suppression of fatigue cracking with nanometer-scale multilayered coatings”, Scr Mater, vol. 43, no. 6, pp. 491–496, Aug. 2000. [CrossRef]
- M. R. Stoudt, R. E. Ricker, and R. C. Cammarata, “The influence of a multilayered metallic coating on fatigue crack nucleation”, Int J Fatigue, vol. 23, pp. 215–223, 2001. [CrossRef]
- A. Misra, H. Kung, D. Hammon, R. G. Hoagland, and M. Nastasi, “Damage Mechanisms in Nanolayered Metallic Composites”, International Journal of Damage Mechanics, vol. 12, no. 4, pp. 365–376, Oct. 2003. [CrossRef]
- A. Misra and H. Kung, “Deformation behavior of nanostructured metallic multilayers”, Adv Eng Mater, vol. 3, no. 4, pp. 217–222, 2001. [CrossRef]
- M. J. Buehler and A. Misra, “Mechanical behavior of nanocomposites”, MRS Bull, vol. 44, no. 1, pp. 19–24, Jan. 2019. [CrossRef]
- S. Zheng, Z. Yan, X. Kong, and R. Zhang, “Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites”, Jun. 11, 2022, Chinese Academy of Sciences. [CrossRef]
- J. S. Koehler, “Attempt to Design a Strong Solid”, Phys Rev B, vol. 2, no. 2, pp. 547–551, Jul. 1970. [CrossRef]
- A. Sáenz-Trevizo and A. M. Hodge, “Nanomaterials by design: A review of nanoscale metallic multilayers”, Nanotechnology, vol. 31, no. 29, May 2020. [CrossRef]
- A. G. Dirks and J. J. van den Broek, “Metastable solid solutions in vapor deposited Cu–Cr, Cu–Mo, and Cu–W thin films”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 3, no. 6, pp. 2618–2622, Nov. 1985. [CrossRef]
- Y. G. Chen and B. X. Liu, “Irradiation-induced alloying in immiscible Mo-Cu system through multilayer technique”, J Appl Phys, vol. 82, no. 8, pp. 3815–3820, Oct. 1997. [CrossRef]
- K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions”, J Appl Phys, vol. 71, no. 11, pp. 5433–5444, 1992. [CrossRef]
- Y. W. Yen, Y. L. Kuo, J. Y. Chen, C. Lee, and C. Y. Lee, “Investigation of thermal stability of Mo thin-films as the buffer layer and various Cu metallization as interconnection materials for thin film transistor-liquid crystal display applications”, Thin Solid Films, vol. 515, no. 18, pp. 7209–7216, Jun. 2007. [CrossRef]
- J. Weichart, M. Elghazzali, S. Kadlec, and A.P. Ehiasarian, “PVD Processes in High Aspect Ratio Features by HIPIMS”, in Society of Vacuum Coaters, 52nd Annual Technical Conference Proceedings, 2009, pp. 201–206.
- G. K. Rane, S. Menzel, T. Gemming, and J. Eckert, “Microstructure, electrical resistivity and stresses in sputter deposited W and Mo films and the influence of the interface on bilayer properties”, Thin Solid Films, vol. 571, no. P1, pp. 1–8, Nov. 2014. [CrossRef]
- X. Liu, H. Bai, Y. Ren, J. Li, and X. Liu, “Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films”, Materials, vol. 17, no. 10, p. 2342, May 2024. [CrossRef]
- Y.-L. Chen, Y.-C. Lin, and W.-Y. Wu, “Mo Contact via High-Power Impulse Magnetron Sputtering on Polyimide Substrate”, Coatings, vol. 12, no. 1, p. 96, Jan. 2022. [CrossRef]
- J. Yeom, G. Lorenzin, L. Ghisalberti, C. Cancellieri, and J. Janczak-Rusch, “The thermal stability and degradation mechanism of Cu/Mo nanomultilayers”, Sci Technol Adv Mater, vol. 25, no. 1, Dec. 2024. [CrossRef]
- Y. Cui, B. Derby, N. Li, N. A. Mara, and A. Misra, “Suppression of shear banding in high-strength Cu/Mo nanocomposites with hierarchical bicontinuous intertwined structures”, Mater Res Lett, vol. 6, no. 3, pp. 184–190, Mar. 2018. [CrossRef]
- T. Sasaki, T. Kaneko, M. Sakuda, and R. Yamamoto, “The electrical resistivity of Cu/Mo multilayered films”, Journal of Physics F: Metal Physics, vol. 18, no. 6, pp. L113–L117, Jun. 1988. [CrossRef]
- T. Kaneko et al., “Structures and electrical properties of Cu/Mo metallic multilayered films”, Journal of Physics F: Metal Physics, vol. 18, no. 9, pp. 2053–2060, Sep. 1988. [CrossRef]
- J. Scifo et al., “Molybdenum oxides coatings for high demanding accelerator components”, Instruments, vol. 3, no. 4, Dec. 2019. [CrossRef]
- P. Vidal García et al., “Effect of Molybdenum Coatings on the Accelerating Cavity Quality Factor”, Instruments, vol. 7, no. 4, Dec. 2023. [CrossRef]
- R. BANHAM et al., “Electroformed front-end at 100 GHz for radio-astronomical applications”, Microw J (Int Ed), 2005, https://www.microwavejournal.com/articles/664-electroformed-front-end-at-100-ghz-for-radio-astronomical-applications.
- M. P. Ulmer, R. Altkorn, M. E. Graham, A. Madan, and Y. S. Chu, “Production and performance of multilayer-coated conical x-ray mirrors”, Appl Opt, vol. 42, no. 34, p. 6945, Dec. 2003. [CrossRef]
- D. Spiga, G. Pareschi, G. Grisoni, and G. Valsecchi, “Hard X-ray multilayer coated astronomical mirrors by e-beam deposition”, in Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications II, SPIE, Oct. 2004, p. 66. [CrossRef]
- R. Hudec, L. Pina, and A. V. Inneman, “Replicated grazing incidence x-ray optics”, in Proceedings Volume 4012, X-Ray Optics, Instruments, and Missions III, 2000, pp. 422–431. [CrossRef]
- V. A. Dolgashev, L. Faillace, M. Migliorati, and B. Spataro, “Investigations on the multiple-sector hard-copper X-band accelerating structures”, Nucl Instrum Methods Phys Res A, vol. 1063, Jun. 2024. [CrossRef]
- P. F. Cheng, S. M. Rossnagel, and D. N. Ruzic, “Directional deposition of Cu into semiconductor trench structures using ionized magnetron sputtering”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 13, no. 2, pp. 203–208, Mar. 1995. [CrossRef]
- Z. Q. Ma and Y. Kido, “The atomic displacements on surface generated by low-energy projectile”, Thin Solid Films, vol. 359, no. 2, pp. 288–292, Jan. 2000. [CrossRef]
- X. W. Zhou and H. N. G. Wadley, “The low energy ion assisted control of interfacial structure: ion incident angle effects”, Surf Sci, vol. 487, no. 1–3, pp. 159–170, Jul. 2001. [CrossRef]
- X. W. Zhou and H. N. G. Wadley, “Low energy ion assisted control of interfacial structure: Ion fluence effects”, J Appl Phys, vol. 88, no. 10, pp. 5737–5743, Nov. 2000. [CrossRef]
- A. Patelli et al., “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers”, Surf Coat Technol, vol. 201, no. 1–2, pp. 143–147, Sep. 2006. [CrossRef]
- V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Surf Coat Technol, vol. 122, no. 2–3, pp. 290–293, Dec. 1999. [CrossRef]
- J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, “High power impulse magnetron sputtering discharge”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 3, May 2012. [CrossRef]
- A. Anders, “Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)”, J Appl Phys, vol. 121, no. 17, May 2017. [CrossRef]
- A. Hecimovic and A. Von Keudell, “Spokes in high power impulse magnetron sputtering plasmas”, Sep. 06, 2018, Institute of Physics Publishing. [CrossRef]
- Daniel Lundin, Tiberiu Minea, and Jon Tomas Gudmundsson, High Power Impulse Magnetron Sputtering. Elsevier, 2020. [CrossRef]
- C. Li, X. Tian, C. Gong, and J. Xu, “The improvement of high power impulse magnetron sputtering performance by an external unbalanced magnetic field”, Vacuum, vol. 133, pp. 98–104, Nov. 2016. [CrossRef]
- J. Bohlmark, M. Östbye, M. Lattemann, H. Ljungcrantz, T. Rosell, and U. Helmersson, “Guiding the deposition flux in an ionized magnetron discharge”, Thin Solid Films, vol. 515, no. 4, pp. 1928–1931, Dec. 2006. [CrossRef]
- K. Laing, J. Hampshire, D. Teer, and G. Chester, “The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating”, Surf Coat Technol, vol. 112, no. 1–3, pp. 177–180, Feb. 1999. [CrossRef]
- https://www.nist.gov/pml/atomic-spectra-database, “NIST Atomic Spectra DataBase.”.
- G. Y. Yushkov and A. Anders, “Origin of the delayed current onset in high-power impulse magnetron sputtering”, in IEEE Transactions on Plasma Science, Nov. 2010, pp. 3028–3034. [CrossRef]
- D. Horwat and A. Anders, “Compression and strong rarefaction in high power impulse magnetron sputtering discharges”, J Appl Phys, vol. 108, no. 12, Dec. 2010. [CrossRef]
- K. B. Gylfason, J. Alami, U. Helmersson, and J. T. Gudmundsson, “Ion-acoustic solitary waves in a high power pulsed magnetron sputtering discharge”, J Phys D Appl Phys, vol. 38, no. 18, pp. 3417–3421, Sep. 2005. [CrossRef]
- J. Held and A. von Keudell, “Pattern Formation in High Power Impulse Magnetron Sputtering (HiPIMS) Plasmas”, Plasma Chemistry and Plasma Processing, vol. 40, no. 3, pp. 643–660, 2020. [CrossRef]
- H. Winter, F. Aumayr, and G. Lakits, “Recent advances in understanding particle-induced electron emission from metal surfaces”, Nucl Instrum Methods Phys Res B, vol. 58, no. 3–4, pp. 301–308, Jun. 1991. [CrossRef]
- H. Winter, H. Eder, F. Aumayr, J. Lörincik, and Z. Sroubek, “Slow-ion induced electron emission from clean metal surfaces: ‘Subthreshold kinetic emission’ and ‘potential excitation of plasmons,’” Nucl Instrum Methods Phys Res B, vol. 182, no. 1–4, pp. 15–22, Aug. 2001. [CrossRef]
- R. A. Baragiola, E. V. Alonso, J. Ferron, and A. Oliva-Florio, “Ion-induced electron emission from clean metals”, Surf Sci, vol. 90, no. 2, pp. 240–255, Dec. 1979. [CrossRef]
- A. Anders, J. Andersson, and A. Ehiasarian, “High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering”, J Appl Phys, vol. 102, no. 11, 2007. [CrossRef]
- G. Holmén, B. Svensson, and A. Burén, “Ion induced electron emission from polycrystalline copper”, Nuclear Instruments and Methods in Physics Research, vol. 185, no. 1–3, pp. 523–532, Jun. 1981. [CrossRef]
- J. Ferron, E. V Alonso, R. A. Baragiola, and A. Oliva-Florio, “Electron emission from molybdenum under ion bombardment”, J Phys D Appl Phys, vol. 14, no. 9, pp. 1707–1720, Sep. 1981. [CrossRef]
- J. Lörinčík, Z. Šroubek, H. Eder, F. Aumayr, and H. Winter, “Kinetic electron emission from clean polycrystalline gold induced by impact of slow C+, N+, O+, Ne+, Xe+, and Au+ ions”, Phys. Rev. B, vol. 62, no. 23, pp. 16116–16125, Dec. 2000. [CrossRef]
- W. Eckstein, Computer Simulation of Ion-Solid Interactions, vol. 10. in Springer Series in Materials Science, vol. 10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. [CrossRef]
- S. M. Rossnagel, “Gas density reduction effects in magnetrons”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 1, pp. 19–24, Jan. 1988. [CrossRef]
- M. Palmucci, N. Britun, S. Konstantinidis, and R. Snyders, “Rarefaction windows in a high-power impulse magnetron sputtering plasma”, J Appl Phys, vol. 114, no. 11, Sep. 2013. [CrossRef]
- K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, and I. Petrov, “Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 4, pp. 1533–1537, Jul. 2000. [CrossRef]
- L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra”, Nucl Instrum Methods Phys Res B, vol. 9, no. 3, pp. 344–351, Jun. 1985. [CrossRef]
- M. Mayer, “SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA”, AIP Conf Proc, vol. 475, no. 1, pp. 541–544, Jun. 1999. [CrossRef]
- S. Berg, A. M. Barklund, B. Gelin, C. Nender, and I. Katardjiev, “Atom assisted sputtering yield amplification”, Journal of Vacuum Science & Technology A, vol. 10, no. 4, pp. 1592–1596, Jul. 1992. [CrossRef]
- S. Berg and I. Katardjiev, “Resputtering effects during ion beam assisted deposition and the sputter yield amplification effect”, Surf Coat Technol, vol. 84, no. 1–3, pp. 353–362, Oct. 1996. [CrossRef]
- W. Möller and W. Eckstein, “Tridyn — A TRIM simulation code including dynamic composition changes”, Nucl Instrum Methods Phys Res B, vol. 2, no. 1–3, pp. 814–818, Mar. 1984. [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
